

iCity Transportation Planning Suite of
Ontologies

Megan Katsumi
Postdoctoral Fellow
Enterprise Integration Lab
Mechanical and Industrial Engineering
University of Toronto

Mark Fox
Distinguished Professor of Urban Systems Engineering
Professor of Industrial Engineering and Computer Science
Director of the Centre for Social Services Engineering
University of Toronto

Version 1.2

Prepared: June 3, 2020

2

1 Purpose ... 7

2 Scope .. 7

3 Role of the Ontology .. 7

4 Development Approach ... 8

5 Requirements.. 9

5.1 Motivating Scenario: Land Use and Transportation Simulation ... 10

5.2 Motivating Scenario: Transit Research ... 11

5.3 Motivating Scenario: Smart Parking Applications .. 11

5.4 Motivating Scenario: ATIS via ITSoS .. 12

5.5 Motivating Scenario: ArcGIS Query Support ... 13

5.6 Beyond motivating scenarios ... 13

6 The iCity Transportation Planning Suite of Ontologies ... 14

6.1 Namespaces ... 15

6.2 Pragmatic Design Practices ... 16

6.3 Foundational Ontologies .. 17

6.3.1 Location Ontology ... 17

6.3.2 Time Ontology ... 19

6.3.3 Change Ontology ... 22

6.3.4 Activity Ontology... 24

6.3.5 Recurring Event ontology .. 30

6.3.6 Resource Ontology ... 34

6.3.7 Parthood Ontology ... 37

6.3.8 Units of Measure Ontology .. 40

6.3.9 Observations Ontology... 44

6.4 Contact Ontology ... 46

6.4.1 Future Work ... 47

6.5 Person Ontology .. 47

3

6.5.1 Future Work ... 48

6.6 Household Ontology .. 48

6.6.1 Future Work ... 50

6.7 Organization Ontology .. 50

6.7.1 Future Work ... 54

6.8 Building Ontology ... 54

6.8.1 Future Work ... 55

6.9 Vehicle Ontology ... 56

6.10 Transportation System Ontology .. 57

6.10.1 Future Work ... 64

6.11 Travel Costs .. 65

6.11.1 Future Work ... 66

6.12 Parking Ontology .. 66

6.12.1 Future Work ... 69

6.13 Public Transit Ontology .. 69

6.13.1 Future Work ... 72

6.14 Land Use Ontology ... 73

6.14.1 Future Work ... 78

6.15 Trip Ontology.. 78

6.15.1 Future Work ... 79

6.16 Trip Costs .. 79

6.16.1 Future Work ... 80

6.17 Urban System Ontology .. 80

6.17.1 Future Work ... 81

7 Evaluation .. 81

7.1 Consistency .. 82

7.2 Competency ... 82

4

7.2.1 CQs for Land Use and Transportation Simulation ... 84

7.2.2 CQs for Transit Research ... 86

7.2.3 CQs for Smart Parking Applications.. 87

7.2.4 CQs for ATIS via ITSoS .. 90

7.2.5 CQs for ArcGIS Query Support ... 91

8 Application ... 92

8.1 Exploration of Travel Model Data ... 92

8.1.1 Summary of Facets ... 93

8.1.2 Data Mappings ... 95

8.1.3 Future Work ... 95

8.2 Analysis of TTC Data for Bus Bridging Study ... 96

8.2.1 Data mapping ... 96

8.2.2 Queries ... 96

8.2.3 Future Work ... 97

8.3 Ontology for ATIS in the ITSoS Architecture .. 97

8.3.1 Project 1.2: ITSoS Architecture ... 97

8.3.2 ATIS Application ... 99

8.3.3 Data Mapping ... 100

8.3.4 Future Work ... 100

8.4 Integration with ArcGIS .. 101

8.4.1 Initial Implementation .. 101

8.4.2 Data Mapping ... 102

8.4.3 Future Work ... 103

9 Workflows .. 103

9.1 Data Mapping .. 103

9.1.1 Alternative approaches ... 104

9.1.2 Basic data mapping workflow with Karma and Virtuoso .. 104

5

9.1.3 Repeated Data Mappings ... 105

9.1.4 Offline Batch Mapping .. 106

9.2 Data Storage and Access ... 107

9.2.1 Upload to triple store .. 107

9.3 Ontology Documentation... 108

9.4 Ontology Versioning ... 109

9.4.1 Versioning Principles ... 109

9.4.2 Process to Update Ontology-x.owl .. 110

9.4.3 Versioning infrastructure ... 111

10 Future Work ... 112

Acknowledgements .. 114

References .. 114

Appendix A. TASHA Data Mapping .. 118

Mapping ... 118

Simulation Metadata .. 119

Mississauga Zones ... 119

persons.csv ... 119

trips.csv .. 124

trip_modes.csv ... 126

trip_stations.csv .. 128

facilitate_passenger.csv .. 129

Future Work ... 130

Appendix B. Transit Data Mapping .. 132

Subway & SRT Logs (December 2018) .. 132

AVL Data (TTC NVAS XML Feed) ... 134

TTC Routes & Schedules (gtfs) ... 136

agency.txt ... 136

6

calendar_dates.txt ... 137

calendar.txt ... 138

routes.txt ... 139

shapes.txt .. 140

stop_times.txt ... 141

stops.txt .. 143

trips.txt ... 144

Appendix C. Loop Detector Data Mapping .. 147

Appendix D. Esri GFX Data Mapping.. 150

GFX tables used: .. 150

Esri Extension of TPSO (“GSX Ontology”) .. 150

Appendix E. Mappings from tables to iCity TPSO Esri Extension.. 153

Neighbourhood (neighbourhood_mun) .. 153

Land Use (landuse_mun) ... 153

Land Cover (landcover_mun) .. 153

Point of Interest (pointofinterest_mun) .. 154

Road Segment (roadsegment_mun) ... 154

Intersect Neighbourhood (generated via ArcGIS process) .. 154

Near Land Use (generated via ArcGIS process) .. 154

Near Land Cover (generated via ArcGIS process) .. 154

Near POI (generated via ArcGIS process) ... 154

7

1 Purpose

The purpose of this document is to present the iCity Transportation Planning Suite of Ontologies

(TPSO) developed as part of the iCity-ORF Project [1] and to report on the involved

development and application processes.

2 Scope

The iCity TPSO defines the concepts required to represent the urban system and its behaviour, as

informed by work undertaken by the iCity-ORF project teams. This report includes

documentation of the contents of the iCity TPSO, along with its development process including

the identified requirements and evaluation results. In addition, examples of its application in the

iCity-ORF project and recommendations for its implementation and maintenance are included.

The intended semantics of the ontologies’ concepts are described in natural language with an

overview of the formal axioms that capture, or in some cases approximate, this semantics. The

iCity TPSO is made up of ontologies that are axiomatized in OWL 2 [2]. This report does not go

into detail addressing the concepts defined in reused (imported), external ontologies, except

where necessary to describe concepts introduced in the iCity TPSO. The reader is referred to the

original documentation for these ontologies as required.

3 Role of the Ontology

All of the projects within the iCity-ORF project are situated in the urban domain, therefore it is

not surprising to find many common concepts between them. As such, it stands to reason that

some integration between the different applications should be possible. For example, if data is

collected about the population, it should be usable by various simulations such as ILUTE [3],

and also by the projects developing analysis tools, such as the smart parking application. On the

other hand, there is also ambiguity in how different concepts are used; the same concept may be

defined differently in different applications. This provides a challenge not only for integration of

the iCity applications, but for the shareability and reuse of results: if the knowledge generated by

the iCity projects is not defined sufficiently, it will be difficult for any other researchers to

understand and leverage it.

The key purpose of the iCity TPSO is to address these challenges of data integration and reuse.

The iCity TPSO provides a common set of terms with which data can be stored and accessed.

Ontologies are able resolve any ambiguities and disagreements between terms by defining a

common set of concepts that completely captures the domain, with agreed-upon definitions. In

the case that two applications attribute a different meaning to the same term, the result will be

two distinct terms with distinct, precisely defined meanings. In this way, we can recognize these

differences and clearly identify the relationships between different concepts. The identification

of relationships may also serve to uncover synergies between the projects, by illustrating how

data from one project may serve to inform the work of another. The iCity TPSO will be used to

organize and describe data within the iCity-ORF project.

One resulting artifact of this effort will take the form of a triple-store(s), often referred to as a

knowledge base, created by mapping data from the iCity-ORF applications to the agreed-upon

terminology defined in the iCity TPSO. In future work, an alternative architecture may be

explored wherein some or all of the data is maintained in its original location, such as a relational

8

database, and accessed via mappings to the ontology. The high-level architecture for the

ontology’s implementation in the context of the iCity-ORF project is illustrated in Figure 1.

Another intended use of the iCity TPSO is to support automated reasoning. Owing to the formal

logic that the ontology is encoded in, its axioms are capable of supporting data validation and

inference of the information stored in the knowledge base. The precise and formal nature of the

ontologies are able support the services such as inference and data validation. Based on the

definitions, we may be able to infer new information that was not originally part of the

knowledge base. Data validation is supported as a result of the consistency-checking mechanism.

At the time of this writing, applications focused on automated reasoning with the iCity TPSO

have not been explored in detail.

Figure 1: iCity Knowledge Base High-Level Architecture

4 Development Approach

The ontologies presented in this report have been developed based on the guidelines for ontology

development set out by both [4] and [5]. This combined approach may be described in terms of

the following six activities, the outcomes of which are outlined in subsequent sections of this

report.

1. Requirements gather: developing a clear understanding of the domain and required scope

of the ontology. This activity is facilitated with the identification of motivating scenarios

and eventually made more precise with the specification of Competency Questions.

Competency Questions are queries that the ontology should be capable of representing

and answering and may be thought of as analogous to functional requirements in

Software Engineering.

9

2. Reuse: where possible, ontologies that are suitable for reuse to (partially) satisfy the

requirements are identified. The reuse of existing vocabularies, as appropriate, is also

considered.

3. Ontology Design: the identification and definition of classes, the class hierarchy, and

properties is tightly linked and iterative, rather than sequential as described by [4]. These

terms are identified with a middle-out approach: a compromise between a bottom-up and

top-down approach to identifying the key terms as suggested by [5]. The reference to

“facets” and “slots” by [4] may be interpreted as the task of defining axioms that relate

the classes and properties with one-another, (primarily subsumption and equivalence, but

also pertaining to object property characteristics).

4. Evaluation: the task of evaluation is an important step that is addressed in several ways in

this project:

a. Consistency: The ontologies shall be classified using an automated reasoner to

demonstrate consistency of the definitions and absence of unsatisfiable classes.

b. Competency: The ontologies shall be assessed against the Competency Questions

specified in the Requirements stage.

5. Application: The ontology will be applied in a variety of case studies to serve as a

concrete demonstration of its viability as a solution for several of the motivating

scenarios. A key aspect in all applications is the definition of instances via the ontology.

This will be accomplished with the specification (and materialization) of R2RML

mappings from existing data sources to the ontology. These mappings illustrate the

adequacy of the ontology to capture data from relevant sources. The processes involved

are described in greater detail later in the report.

5 Requirements

In order to clarify the domain and scope of an ontology for transportation planning, interviews

were conducted and relevant documents were reviewed to reveal required competency areas in

two key knowledge categories: urban system characteristics and urban system behaviour, as

outlined in Table 1. The concepts identified in this effort would eventually form many of the

individual ontologies that the iCity TPSO is built from.

10

Table 1: Key competency requirements.

Delving deeper into the requirements for each research group, several motivating scenarios were

identified. For each scenario, relevant data sets and competency questions were identified. The

identification of relevant data sets served as a particularly useful source of requirements. Since

data collection is a major task in transportation planning, the datasets provided concrete evidence

to drive the required scope and level of detail. The resulting ontology could then be assessed in

terms of its ability to represent the competency questions as well as to capture the information in

the datasets.

5.1 Motivating Scenario: Land Use and Transportation Simulation

Reviewing the results of large-scale simulations, such as those generated by the Integrated Land

Use, Transportation, Environment (ILUTE) [3] and the Travel Activity Scheduler for Household

Agents (TASHA/GTAModel) [6] models, can be challenging. The ontology can be used to

capture models and simulation output and support question-answering to explore the results.

Maintaining the data that serves as input to these simulations also poses a challenge for

researchers. The ontology may be used to capture and relate historical data to improve access for

researchers. With this motivation in mind, the following set of queries regarding the results of

land use and transportation simulations was identified:

CQ1-1: What trips originated from/ended in a given zone?

CQ1-2: What is the occupation breakdown of the travelers whose trips originated/ended in a

given zone?

Knowledge Category Competency Areas

Urban System Characteristics Population

People

Households

Jobs

Schedules

Means of travel

Land Use

Types of land use

Occupied space

Transportation

Road networks

Transit networks

Transportation modes and characteristics of (e.g. access points)

Transportation vehicles and characteristics (e.g. capacity, speed,

accessible routes/networks)

Urban System Behaviour Demographic Update: changes to population (people, household

structures)

Labour Market: changes to job situations

Housing Market: changes to housing situations

Auto Ownership: changes to auto ownership

Activity-Based Daily Travel: activity schedules and associated travel

Transportation Emissions & Dispersed Pollution Concentrations

Transportation events: scheduled trips, failures, scheduled

maintenance

11

CQ1-3: What were the purposes of the trips that originated/ended in a given zone?

CQ1-4: In a particular time period, how many trips originated/ended in a given zone?

CQ1-5: What were the transportation mode(s) taken by trips that originated/ended in a given

zone?

CQ1-6: Who are the members of a particular household?

CQ1-7: What trips were performed, by which members of a particular household?

CQ1-8: What were the purposes of the trips performed by members of a particular

household?

CQ1-9: What is the age, sex, and occupation of the traveler who performed a particular trip?

CQ1-10: What land use classification is associated with a particular parcel?

5.2 Motivating Scenario: Transit Research

Transit research activities often involve collecting, integrating, and analyzing data from various

sources. For example, researchers may need to combine data from various parts of the transit

system to assess how some failure event, for example on a streetcar line, may impact nearby bus

routes. Even assessing data about a single transit route may require the integration of various

datasets, such as data describing the route itself, data describing the actual behavior of vehicles

on the route, data on the vehicle’s characteristics, and perhaps contextual information such as

ridership. The ontology may be employed to facilitate the integration of transit data, thereby

supporting easier access to information of interest.

In the iCity-ORF project, one of the areas of transit research was to support the development of

strategies for transit resilience (so-called “bus bridging” where buses are re-routed to serve as

shuttle buses in order to delays on the subway lines). As an initial step toward supporting these

research areas, we elected to focus on supporting this project. This required support for queries

to detect buses that had been re-routed as shuttle buses. This information could then be used to

further analyze a given bus bridging strategy and assess its impact on the network.

CQ2-1: What date and time has a subway incident occurred?

CQ2-2: What are the locations of vehicles on a particular route after the occurrence of a

subway incident?

CQ2-3: Are any buses located more than a certain distance from their assigned route at a

given point in time?

5.3 Motivating Scenario: Smart Parking Applications

Through a tripartite research agreement on transportation and smart cities, a motivating scenario

beyond the context of the iCity-ORF project, for the Chinese University of Hong Kong (CUHK),

was identified. Researchers at the CUHK have been investigating the potential for smart parking

applications, especially in the context of electric vehicles. Providing parking information to

drivers, whether real-time or static, is useful in helping them to locate a suitable parking spot.

The question of suitability is complicated for drivers of electric vehicles, as they may require a

parking location with access to a particular type of charger. Researchers at the CUHK have been

investigating the potential for such smart parking applications, and identified an opportunity to

use ontologies to facilitate the access and integration of the required data. Based on the

envisioned use cases and the currently available data, the following set of competency questions

was identified:

12

CQ3-1 What is the address of a particular parking lot?

CQ3-2 What is the capacity of a particular parking lot?

CQ3-3 Is some parking lot accessible by disabled people, and if so how many parking spots

are for disabled vehicles?

CQ3-4 Is there a height limit for vehicles for a particular parking lot?

CQ3-5 What are the geographic coordinates for a particular parking lot?

CQ3-6 What building is a particular parking lot located in?

CQ3-7 Is a particular parking lot open to the public at a given time?

CQ3-8 How much does it cost to park in a particular parking lot?

CQ3-9 What types of payment are accepted at a particular parking lot?

CQ3-10 How many parking spots are designated for electric vehicles in a particular parking

lot?

CQ3-11 What types of electric vehicle chargers are available in a particular parking lot?

5.4 Motivating Scenario: ATIS via ITSoS

The tremendous amount and diversity of data generated by ITS (Intelligent
Transportation Systems) has become an important source for its services and
applications. Travelling from one place to another often involves different information
from different ITS services. Unfortunately, the multiplicity of ITS and their complexity
has produced a body of heterogeneous data that cannot easily be integrated. Data
from different sources must be analyzed, classified and re-organized into a
homogenous format to make it universally applicable.
Many institutions and companies have developed ICT solutions to close the gap and
manage data integration and representation by using well-known industrial protocols
likes GTFS. Nevertheless, these solutions lack a formal semantics; there is no common
standard across systems to manage and exchange data and information.
ITS tools require integration of many heterogeneous data sources. Adaptability is challenging for

traditional ITS frameworks due to the overhead to integrate new and changing data sources. To
address this challenge, an architecture has been designed to support scalable and
extensible ITS applications using a semantic representation and integration. The ITSoS

architecture, originally proposed by [7], is intended to leverage the ontology to support data

integration. In general, the range of queries required to support an implementation of the ITSoS

architecture will vary greatly as a function of the ITS application(s) to be supported. In the iCity-

ORF project (1.2), the ITSoS architecture was demonstrated by way of the Advanced Traveler

Information System (ATIS). To support this implementation, the iCity ontology was required to

capture data and formulate competency questions regarding the traffic status data on various road

segments in the transportation network, as outlined below.

CQ4-1: What are the averages of the TTI_Max values that have been observed over some

period of time?

CQ4-2: What are the averages of the TTI_Max values that have been observed at some

location?

CQ4-3: What are the averages of the TTI_Max values that have been observed at some

location, over some period of time?

In the questions above TTI_Max refers to the Maximum Transportation Travel Index; TTI_Max

is a measurement used to indicate traffic conditions by way of a comparison of the observed rate

13

of travel to the maximum throughput speed on a road segment. The questions were specified

with respect to the average value because at the time of this work the ATIS application was

restricted to work with loop detector readings that had been aggregated over road segments and

ten-minute intervals in time.

5.5 Motivating Scenario: ArcGIS Query Support

ESRI Canada provides geospatial information system (GIS) solutions used for transportation

research, urban planning, and a variety of other applications. These tools provide users with a

wealth of data and powerful tools for visualization and analysis. Despite this, query formulation

and revision can be challenging, in particular for less experienced users. These difficulties may

be remedied with use of an ontology to formalize the terms of interest and provide a single

interface with which complex queries may be formulated. Streamlined access to the geospatial

data in ArcGIS will support a variety of use cases, and may be particularly valuable for ongoing

work towards NextGen-911 services.

The same ontology developed to provide query support may also serve as a specification of

recent standardization efforts by the Canadian Transportation Infostructure Initiative (CTII)1.

The CTII is currently working to develop a Community Map of Canada2 – a complete and

accurate base map of Canada that is created by integrating data from various municipalities and

other regions. Central to this initiative is the GeoFoundation Exchange (GFX)3, an effort to

collect, unify, and publish base map data. Beyond this, there may be opportunities to employ the

ontology for automated reasoning services such as classification or validation.

An initial set of CQs was identified to explore the use of the ontology for query support. These

CQs are example queries requiring the combination of multiple GFX datasets to retrieve the

required information. They are derived from a prototype application that requires contextual

information about a particular route.

CQ5-1: What neighbourhood(s) does a particular route go through?

CQ5-2: What types of land use does a particular route go through?

CQ5-3: What types of land cover does a particular route go through?

CQ5-4: What points of interest does a particular route pass by?

CQ5-5: What types of road does a particular route travel on?

CQ5-6: What (if any) parts of a route travel on a road segment that is above grade?

CQ5-7: What (if any) parts of a route travel on a road segment that is below grade?

5.6 Beyond motivating scenarios

The motivating scenarios provide precise, testable requirements and opportunities to apply the

ontology in practice. Nevertheless, it should be noted that the scope of the resulting ontology

extends considerably beyond the requirements dictated by the motivating scenarios. This broader

scope results from the interviews conducted with subject-matter experts, along with sample data

1 https://esri.ca/en/node/16356

2 https://esri.ca/en/programs/the-community-map-of-canada

3 https://esri.ca/en/programs/community-maps-program/geofoundation-exchange

14

that was provided at earlier stages in development. The motivating scenarios that were explored

in greater detail were selected based on pragmatic criteria such as data availability, the stage of

the various research projects. There exist many additional motivating scenarios, both within and

beyond the iCity-ORF project, that the iCity TPSO is intended to support. These should be

explored in future work.

6 The iCity Transportation Planning Suite of Ontologies

In our analysis of the requirements for an ontology for the urban system, we recognized the

following key concepts that must be defined:

• Person

• Organization

• Household

• Building

• Parking

• Vehicle

• Transportation Networks

• Public Transit

• Land Use

• Travel

The semantics of each of these concepts will be defined by a distinct ontology. Each ontology

will then be composed to create the iCity TPSO, to define the urban system and its behaviour: its

population, land use, transportation infrastructure, and the travel that occurs within it. This

representation may then be extended as required to capture the individual applications, so that

they may be integrated with one another and sufficiently well-defined so as to be shareable and

reproducible with the research community. In addition to these domain-specific ontologies, a set

of foundational ontologies will be also required in order to define core concepts that apply across

the transportation domain. These will be introduced first, followed by the presentation of each

domain-specific ontology in more detail. Conceptually, the ontologies can be stratified into three

levels of abstraction, as depicted in Figure 2. The Foundation Level covers very general concepts

such as Time, Location, and Activity. The City Level covers concepts that are general to cities

and span all services such as Households, Services, Residents. The Service Level spans concepts

commonly associated with a particular service (i.e. transportation planning) but still shared with

other services, such as Vehicles and Transportation network.

15

Figure 2: Levels of the iCity TPSO

6.1 Namespaces

The following namespace prefixes are used to support shorthand reference of terms throughout

the presentation of the ontologies in this document:

• owl: http://www.w3.org/2002/07/owl#

• rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

• rdfs: http://www.w3.org/2000/01/rdf-schema#

• xsd: http://www.w3.org/2001/XMLSchema#

• geo: http://www.opengis.net/ont/geosparql#

• partwhole: http://ontology.eil.utoronto.ca/cdm/Mereology/

• time: http://www.w3.org/2006/time#

• change: http://ontology.eil.utoronto.ca/cdm/Change/

• activity: http://ontology.eil.utoronto.ca/cdm/Activity/

• iso21972: http://ontology.eil.utoronto.ca/ISO21972/iso21972#

• loc: http://ontology.eil.utoronto.ca/cdm/SpatialLoc/

• schema: http://schema.org/

• om: http://ontology.eil.utoronto.ca/cdm/OM/

• lbcs: http://ontology.eil.utoronto.ca/icity/LBCSv2/

• person: http://ontology.eil.utoronto.ca/cdm/Person/

• building: http://ontology.eil.utoronto.ca/cdm/Building/

• cci-shelter: http://ontology.eil.utoronto.ca/GCI/Shelters/GCI-Shelters.owl#

• tove: http://ontology.eil.utoronto.ca/organization.owl#

• resource: http://ontology.eil.utoronto.ca/cdm/Resource/

• rec: http://ontology.eil.utoronto.ca/cdm/RecurringEvent/

6

16

6.2 Pragmatic Design Practices

Before presenting the ontologies, we summarize and explain some of the pragmatic (as opposed

to pertaining to the formal logic) design practices that were adopted in the creation of the

ontologies. These practices do not pertain to the semantic definitions, but rather are adopted to

address practical concerns regarding the organization and maintenance of the ontologies.

• Organizational terms for reused (imported) ontologies, including those from external

sources: Tn many instances it is desirable to collect terms according to the ontology that

defines them. While IRIs typically serve to identify the origin of a term, in cases where

an ontology’s structure is reasonably complex with numerous imported ontologies it is

cumbersome to rely on IRIs for this purpose. To address this, for each ontology we define

‘organizational’ terms. For example, in the activity ontology all classes are defined as

subclasses of an ActivityOntologyThing, similarly all object properties are subproperties

of an ActivityOntologyProperty, and likewise with data properties. These classes are

admittedly artificial however they allow us to precisely organize the terms in an ontology.

This approach provides an added level of clarity in cases with large ontologies where

multiple ontologies are imported.

• iCity ontologies for externally imported ontologies: The decision was made to define

iCity ontologies for all ontologies reused from external sources, rather than directly

referencing and accessing them remotely. For example, rather than import the W3C owl-

time ontology as required, an iCity Time ontology that imports owl-time is defined. This

iCity Time ontology is then the ontology that is imported and referenced by other iCity

ontologies. This is done for two reasons: (1) It allows for the application of an

organizational structure (organizational terms, described previous) to the terms defined in

the ontology. (2) It provides the flexibility for possible extensions in the iCity TPSO,

while maintaining a clear relationship to the original ontologies. In other words, any

additions or changes may be made by defining new concepts in the transportation-

specific ontology, and relating them (e.g. via the subclass relation) to concepts in the

external ontologies. These new concepts will be clearly identifiable their IRI. Note that

the original (e.g. owl-time) ontology’s IRIs are not altered through this process, so

traceability and interoperability are preserved.

17

• IRI reference instead of import for large vocabularies (e.g. units of measure ontology): in

some instances, the reuse of a small amount of a very large, un-modularized ontology

may be required. In such cases, we adopt an approach referred to as “term reuse” wherein

only the necessary terms from the ontology are introduced, as opposed to importing a

sizeable theory with only a small percent of relevant content. In general, this approach to

reuse may be problematic – however problems regarding the capture and preservation of

a terms’ original semantics may be mitigated if the reused terms are from considerably

lightweight ontologies, and with the use of existing approaches to module extraction (e.g.

the extract tool supported in [8]).

• Identifying expressivity limitations: if semantics cannot be precisely captured in OWL, it

should at least be represented in the OWL ontology, defined in natural language, and

ideally in the future they may be captured in some more expressive extension.

6.3 Foundational Ontologies

In addition to the concepts that are specific to an urban system, there exist foundational concepts,

such as space and time, that are required to fully define the domain. Each concept is defined its

own foundational ontology, described below.

6.3.1 Location Ontology

http://ontology.eil.utoronto.ca/icity/SpatialLoc.owl

To effectively capture the location of some object, several concepts must be introduced. First, a

distinction must be made between the object and its location. Objects may occupy or otherwise

be associated with some location – that is, a region in space or a so-called spatial “feature”. The

ontology must not only support a representation of these concepts, but of the relationships

between spatial features. In particular, topological relationships are important as they allow for

the identification of how one area in space is situated relative to another. For example, is one

area contained in another? Are two areas touching, or disconnected?

Finally, to precisely describe the location of an object in space, some notion of geometry is

required. This is important to represent the quantitative aspects of the feature, which may be

captured in the data as a point or perhaps as a polygon or a line.

6.3.1.1 The Ontology

The Location ontology reuses and extends the ontology developed as part of the GeoSPARQL

standard [9] to specify the concepts of interest. GeoSPARQL specifies a query language for

spatial data, and the ontology4 provides a required vocabulary of spatial relations. It is

4 http://www.opengis.net/ont/geosparql

18

particularly attractive as it has been published as a standard by the OGC; in addition, the query

functions specified in the standard are implemented, to various extents, by many existing triple-

stores.

The GeoSPARQL ontology represents the location of objects using two key classes: Feature and

Geometry, as shown in Table 2. A Feature is a spatial region, whereas a Geometry is a more

abstract object that is used to quantitively describe the shape of some spatial object(s). The key

properties, shown in Table 3, are largely made up of topological relations between Features.

In order to capture the quantitative geospatial information, spatial features may be associated

with geometry objects, via the hasGeometry property. These geometries may then be encoded

with coordinate information through the specification of WKT (well-known text) values with the

data property asWKT. The default reference system for the coordinate values is assumed to be

WGS84. While the GeoSPARQL specification allows for the identification of alternate reference

systems, captured as IRIs and concatenated with the coordinates, it should be noted that current

support is not widespread or standardized, therefore automated translation between these systems

should not be assumed.

We extend the GeoSPARQL ontology with the property hasLocation to capture the relationship

between objects and the spatial regions that they occupy. Similarly, the associatedLocation is

introduced to capture the association of some non-spatial object to a particular location. For

example, a train station may occupy a fairly large spatial location but be associated with a

particular point, e.g. according to its address. The ontology is also extended with a specialized

data property, to support implementations in the Allegrograph triple-store. The as_nDLatLon

data property allows for the association of geometries with an Allegrograph-specific datatype for

geospatial data.

Table 2: Key classes in the Location Ontology

Table 3: Key properties in the Location Ontology

Object Property Value

geo:Feature rdf:subClassOf geo:SpatialObject

geo:Geometry rdf:subClassOf geo:SpatialObject

Property Characteristic Value (if applicable)

geo:sfEquals Domain and Range geo:SpatialObject

geo:sfDisjoint Domain and Range geo:SpatialObject

geo:sfIntersects Domain and Range geo:SpatialObject

geo:sfTouches Domain and Range geo:SpatialObject

geo:sfWithin Domain and Range geo:SpatialObject

geo:sfContains Domain and Range geo:SpatialObject

geo:sfOverlaps Domain and Range geo:SpatialObject

geo:sfCrosses Domain and Range geo:SpatialObject

geo:hasGeometry Domain geo:Feature

geo:hasGeometry Range geo:Geometry

hasLocation Range geo:Feature

19

6.3.1.2 An Example

For example, consider the location of a vehicle. A vehicle may be located at a person’s home or

work. Similarly, a transit vehicle may be located at some station, maintenance yard, or at some

point on a particular transit route. The Spatial Feature where the vehicle is located may be

represented by some geometry (e.g. a point), and may have relationships of interest with other

spatial features. For example, the location of the vehicle may be contained in some other spatial

feature (corresponding to a traffic zone, for example). The resulting representation is illustrated

in Figure 3.

Figure 3: An example representation of a location information for a vehicle.

6.3.1.3 Future Work

The GeoSPARQL standard supports the identification of alternate coordinate reference systems,

captured as IRIs and concatenated with the coordinates. However, support for translation

between these systems is limited. Future work should address this in greater detail.

Implicit in the description of a spatial feature and its geometry are its dimensions. In theory,

properties such as area, height, and length may be inferred from the geometry of some spatial

feature. However, in practice these properties are captured separately. Future work should

attempt to formalize the relationship between these properties.

6.3.2 Time Ontology

http://ontology.eil.utoronto.ca/icity/Time.owl

5 AllegroGraph-generated nD datatype for lat-lon location data

associatedLocation Range geo:Feature

geo:asWKT Range geo:wktLiteral

as_nDLatLon Domain geo:Geometry

Range http://franz.com/ns/allegrograph/5.0/ge

o/nd#_lat_la_-9.+1_+9.+1_+1.-4_+1.-

1_lon_lo_-1.8+2_+1.8+2_+1.-45

http://ontology.eil.utoronto.ca/icity/Time.owl
http://franz.com/ns/allegrograph/5.0/geo/nd#_lat_la_-9.+1_+9.+1_+1.-4_+1.-1_lon_lo_-1.8+2_+1.8+2_+1.-4
http://franz.com/ns/allegrograph/5.0/geo/nd#_lat_la_-9.+1_+9.+1_+1.-4_+1.-1_lon_lo_-1.8+2_+1.8+2_+1.-4
http://franz.com/ns/allegrograph/5.0/geo/nd#_lat_la_-9.+1_+9.+1_+1.-4_+1.-1_lon_lo_-1.8+2_+1.8+2_+1.-4

20

The concept of time is so pervasive that its definition is often taken for granted. In order to

define an ontology for time, the objects of interest must be identified. What are the things that

will be described? In general, three approaches to a representation of time have been identified:

point-based, interval-based, and mixed. In a point-based representation, the objects of interest are

timepoints. The passing of time is described as an ordering over time points, and periods of time

may be represented as a series of these points. In an interval-based representation the objects of

interest are time intervals, whereas the mixed representation includes both timepoints and time

intervals. Key to all of these representations is that there is an ordering that holds over these time

objects. We must be able to describe whether a time object is before another, and in the case of

time intervals we must be able to describe other relationships such as whether one interval is

contained in or overlaps with another. In addition, a representation of time values (e.g. date and

time stamps) is critical for iCity-ORF projects as the temporal dimension is critical for a large

number of data sets, such as travel activities and transit trips.

6.3.2.1 The Ontology

Time is a concept that is fundamental, not only for transportation planning, but for many other

domains. For this reason, it is not surprising that a well-established ontology of time already

exists, published as a W3C standard [10] and originally presented in work by [11] . This

representation is reused directly; as described in Section 6.1, rather than import the ontology

directly each time its use is required, the time ontology is imported by a TPSO-specific time

ontology, with no changes apart from the introduction of the so-called organizational classes

(also described in Section 6.1).

The Time Ontology adopts a mixed representation of time, including both time instant and time

interval classes. Definitions of the key classes and properties in the Time ontology are outlined in

Table 4.

21

Table 4: Key classes in the Time Ontology

6.3.2.2 An Example

Should we wish to represent an instant in time at which a vehicle exists, relative to some earlier

time before the vehicle exists, this would involve the introduction of two Instant objects that

could be related via the before property. Should the data be available, the instants could be

further described with the date-time stamp using the inXSDDateTime data property, or using the

inDateTime property to relate the instants to a DateTimeDescription object.

Alternatively, we might know the interval but the not the precise instant. If specific data were

known regarding the date and time of these interval, say that it began at 09:22 EST on June 19,

2019 and ended at 11:33 EST on July 12, 2019, this could be specified using the

inXSDDateTime data property. In this case, the instant might simply be described as being in the

interval using the inside property. This example is depicted in Figure 4.

Object Property Value

time:TemporalEntity EquivalentClass time:Instant and time:Interval

time:before only time:TemporalEntity

time:after only time:TemporalEntity

time:hasBeginning only time:Instant

time:hasEnding only time:Instant

time:hasDuration only time:Duration

time:Instant subClassOf time:TemporalEntity

time:inside only time:Interval

time:inTimePosition max 1 time:TimePosition

time:inXSDDateTimeStamp max 1 xsd:DateTimeStamp

time:Interval subClassOf time:TemporalEntity

time:meets only time:Interval

time:overlaps only time:Interval

time:starts only time:Interval

time:finishes only time:Interval

time:during only time:Interval

time:equals only time:Interval

time:DateTimeDescription time:day max 1 rdfs:Literal

time:dayOfWeek max 1 owl:Thing

time:dayOfYear max 1 rdfs:Literal

time:hour max 1 rdfs:Literal

time:minute max 1 rdfs:Literal

time:month max 1 rdfs:Literal

time:second max 1 rdfs:Literal

22

Figure 4: Example use of the Time Ontology

6.3.3 Change Ontology

http://ontology.eil.utoronto.ca/icity/Change.owl

Many of the concepts identified in the urban system ontologies are subject to change. For

example, a Vehicle will have one location at one time, and another location at a later time; it may

have only one passenger at one time, and four passengers at a later time. Similarly, many

attributes of Persons, Households, and even Transportation Networks may change over time.

Change over time plays a role in many domains, and is by no means a new research topic. In

fact, several approaches for capturing change in OWL have been proposed [12],[13]. Despite

these solutions, we have found that Semantic Web practitioners currently lack clear and precise

methods for how to apply these approaches to capture change at a domain level, whether reusing

an ontology that does not account for change over time or developing an ontology from scratch.

The Change Ontology serves as a clear guide to support a consistent approach to formalizing

how things change over time throughout the iCity TPSO.

6.3.3.1 The Ontology

An approach to representing changing properties, or fluents, that leverages the 4-dimensionalist

perspective was proposed by [12]. We adopt a similar approach, based on the design pattern

presented in [14], requiring the representation of objects that are subject to change with two

classes: invariant and variant parts of the concept; we refer to these as TimeVaryingConcept and

Manifestation classes, respectively. By distinguishing between these class types and recognizing

the properties that are (and aren't) subject to change, the ontology supports the capture of both

the static and dynamic aspects of a particular entity.

A class that is subject to change is defined as a type of TimeVaryingConcept (e.g. Vehicle may

be a subclass of TimeVaryingConcept). The TimeVaryingConcept itself is invariant and defined

by properties that do not change over time. As per [13], we represent TimeVaryingConcepts as

perdurants (things that occur over time, i.e. processes). This is done to enable the required

23

representation however we do not adopt the ontological commitment of these objects as

processes: a TimeVaryingConcept is distinct from a process or event. A TimeVaryingConcept

has Manifestations that demonstrate their changing (variant) properties over time. Different types

(subclasses) of TimeVaryingConcept may be defined based on the Manifestations that are part of

them. The key classes and properties of the ontology are outlined in Table 5 and Table 6,

respectively.

Table 5: Key classes in the Change Ontology

Table 6: Key properties in the Change Ontology

6.3.3.2 An Example

A key question to answer in the representation of changing objects is what properties may be

subject to change, as opposed to other properties which have values that are part of the object’s

identity. The vehicle identifier (VIN) is a unique identifier for a vehicle that is assigned by the

manufacturer and remains constant throughout a vehicle’s lifetime. Therefore, the VIN should be

a property of the TimeVaryingConcept subclass; these classes are typically denoted with “PD” 6

in the context of the iCity TPSO, for example VehiclePD. On the other hand, a vehicle’s location

may change over time. Therefore, the location should a property of the Manifestation subclass (a

6 Note: in order to avoid confusion that may result from the use of the "-Process" suffix (e.g.

VehicleProcess,OrganizationProcess), we opt instead to use the suffix "PD", i.e. short for "Perdurant".

Object Property Value

TimeVaryingConcept

disjointWith time:TemporalEntity and Manifestation

existsAt exactly 1 time:Interval

hasManifestation only Manifestation

equivalentClass hasManifestation some Manifestation and

hasManifestation only Manifestation

Manifestation disjointWith TimeVaryingConcept and time:TemporalEntity

equivalentClass manifestationOf some TimeVaryingConcept and

manifestationOf only TimeVaryingConcept

manifestationOf only TimeVaryingConcept

existsAt exactly 1 time:TemporalEntity

Property Characteristic Value (if applicable)

hasManifestation inverseOf manifestationOf

Inverse Functional -

manifestationOf Functional -

existsAt Ranges time:TemporalEntity

24

member of the Vehicle class). Note that the Change Ontology has implications not only on how

instance data is represented, but also on how domain-specific classes are defined. This example

representation is depicted in Figure 5. The individual “veh1t1” represents a manifestation of the

individual vehicle “veh1”; in other words, veh1t1 captures a snapshot of veh1 in time. While

veh1 has a single VIN for its entire existence, its location will change over time. Therefore, it is

related to a series of individual manifestations (veh1t1 and others) that capture changing

properties, such as location. When the location changes, this will be represented by another

individual manifestation of veh1. Not captured in the diagram is the fact that each manifestation

exists during some point or interval in time and thus may be related to a different temporal entity.

Figure 5: Example use of the Change Ontology

6.3.3.3 Future Work

Future work should clarify the distinction between the adoption of the 4-dimensionalist approach

to capture change and the ontological commitment to the 4-dimensionalist philosophy. There are

many implications in defining a class as a Perdurant (Occurant) or an Endurant (Continuant).

Future work should consider alignment of the iCity Ontology to an Upper Ontology [15] such as

DOLCE [16] or BFO [17] in order to make these commitments explicit.

6.3.4 Activity Ontology

http://ontology.eil.utoronto.ca/icity/Activity.owl

The concept of activities arises in several areas in the domain of transportation planning. Trip

activities are of particular importance as they contribute to both the demand on a transportation

system. In addition, the routine activities that motivate these trips are important considerations.

In the most general sense, we consider activities to be things that happen; events that occur

(scheduled or not) or actions that are performed by some agent. The description of an activity

involves the time of its occurrence and any things that are participants in some way. Finally,

http://ontology.eil.utoronto.ca/icity/Activity.owl

25

central to understanding an activity, and thus central to its definition, is the effect it has or should

have on the world. Trips are defined more precisely in an extension of the activity ontology.

6.3.4.1 The Ontology

There are many OWL ontologies that include the concept of activities, however most are lacking

with respect to the basic representation requirements. The Activity Ontology adopts the Activity

Specification design pattern that was presented by [18] as a solution to address these limitations.

The design pattern proposes a view of causality similar to the Event Calculus [19], employing

the concept of manifestations to describe the states (fluents) that hold before and after an activity.

The representation of activity specifications is based on the activity clusters introduced by Fox,

Sathi, and colleagues [20, 21].

A precursor to the TOVE [22] and PSL [23] activity ontologies, an activity cluster provides a

basic structure for representing activity specifications. Illustrated in Figure 6, it consists of an

activity connected to an enabling and caused state, each of which may be a state tree that defines

complex states via decomposition into conjunctions and disjunctions of states.

Figure 6: A generic activity cluster

It is important to clarify that in this approach an activity is interpreted as a class of occurrences,

in contrast other approaches where activities are separate entities that are related to occurrences

via an occurrence of relation. This decision was motivated by several pragmatic considerations:

foremost that in many cases it is sufficient to capture information regarding individual activities

(i.e. occurrences or events). These activities may be categorized via different subclasses of

“Activity”, but there is no need to associate them with a single activity type entity, unless we

wish to characterize the activity type itself. The capability for this more complex formalization is

supported, should it be required, by the Recurring Event ontology (presented below). Dividing

these representations into two separate ontologies allows users of this representation the

discretion to only include what they need. In addition, much of the semantics that relate activity

types and occurrences – as defined in PSL for example – is not expressible in OWL. There

would be little value in forcing such an ontology in OWL, which would only superficially

capture the intended semantics. Instead, the Activity Ontology works within the limitations of

OWL to capture the concepts of activities, their composition, preconditions and effects, and

ordering. The key terms are described below:

An Activity describes something that occurs in the domain. It may have precondition and/or

effect states, and may be further decomposed into subactivities. An Activity may be enabled by

or cause some State(s). An enabling/causing state is a generalization of a precondition/effect; an

Activity is enabled by or causes some State if it has a subactivity with a precondition or effect

(respectively) of that State. An Activity occurs at some location in time and space, and may have

some participants. Finally, though it is not possible to fully define the semantics in OWL, some

notion of an ordering on activity occurrences must be expressible. To address this, the properties:

“occursBefore” and “occursDirectlyBefore” are introduced in the Activity ontology.

26

While we cannot fully define this semantics of an ordering over occurrences in OWL, we can

leverage the start and end times of an activity to describe the occursBefore property using object

property chaining:

• An activity occursBefore another if its endOf instant is before the beginOf instant of the

other activity: endOf o before o inverse (beginOf) -> occursBefore. The occursBefore

relation is also defined as transitive.

• An activity occursDirectlyBefore another if it occursAt an interval that meets the interval

of the other activity; this can be captured similarly with object property chaining:

occursAt o intervalMeets o inverse(occursAt) -> occursDirectlyBefore.

A state refers to a subclass of manifestations, as defined in the Change Ontology. It may be an

immediate precondition or effect of some Activity, or more generally it may enable or be caused

by some Activity (in which case, it might be a direct precondition or effect of some subactivity

of the activity). A state may be complex and refer to some combination of classes of

manifestations.

• A State may be either non-terminal or terminal. A terminal state has no child states (sub-

states), and therefore refers directly to a class of manifestations, whereas a non-terminal

state has sub-states, which may define some classes of manifestations, or further define

some other complex state types. A state type cannot be both non-terminal and terminal.

• A terminal state has cannot be decomposed, in other words it has no sub-states. It

corresponds to a particular class of manifestations. A terminal state is achieved at some

time if and only if there exists a manifestation within its defined classification, that exists

at that time.

• A non-terminal state may be conjunctive or disjunctive. Naturally, a conjunctive state is

defined by the conjunction of its sub-states, whereas a disjunctive state is defined by the

disjunction of its sub-states. A state cannot be both conjunctive and disjunctive.

Conjunctive and disjunctive states, which do have sub-states, are achieved at some time if

their decomposition of state is achieved. Note that in this representation the

decomposition of (decomp_of) property is not a transitive relation, it only refers to the

direct children of a non-terminal state. A more general relation that is transitive is the

substate relation.

The key classes that formalize these concepts are summarized in Table 7 and illustrated in Figure

7.

27

Table 7: Key classes in the Activity Ontology

Object Property Value

Activity hasSubactivity only Activity

hasPrecondition only State

enabledBy only State

hasEffect only State

causes only State

occursAt some time:Interval

beginOf some time:Instant

endOf some time:Instant

spatial:hasLocation only spatial:SpatialFeature

hasParticipant only change:Manifestation

occursBefore only Activity

occursDirectlyBefore only Activity

State preconditionOf only Activity

enables only Activity

effectOf only Activity

causedBy only Activity

achievedAt only time:TemporalEntity

TerminalState subClassOf State

disjointWith NonTerminalState

subClassOf change:Manifestation and (preconditionOf

some Activity or effectOf some Activity)

hasDecomp exactly 0 StateType

NonTerminalState subClassOf State

disjointWtih TerminalState

hasDecomp only State and min 2 State

hasSubstate only State

ConjunctiveState subClassOf NonTerminalState

disjointWith DisjunctiveState

DisjunctiveState subClassOf NonTerminalState

disjointWith ConjunctiveState

28

Figure 7: Relationship between key classes in the Activity Ontology

6.3.4.2 An Example

As an example, consider the activity of driving to work. This activity occurs before the activity

of working; therefore axioms at the class-level could be added to state that all instances

(occurrences) of the DriveToWork activity occur before some instances (occurrences) of the

Work activity, though such statements may be too strong in some cases. There are also certain

preconditions and effects of the activity that might be important to represent. For example, an

effect of the DriveToWork activity is that both the driver and the car are at work. This could be

represented as a complex, Conjunctive State. This state may then be decomposed into more

precise sub-states that capture the intended semantics using concepts from other parts of the iCity

TPSO. This example formalization of the DriveToWork activity is illustrated in Figure 8. Note

that the activity DriveToWork might also be decomposed into subactivities (e.g. parts of the trip)

as required. When the resulting Activity and State subclasses are instantiated, additional details

regarding a particular occurrence of an activity may be added. For example, the location of the

person and vehicle may be specified thus providing additional detail on the state before the

particular activity occurrence. This is depicted in Figure 9.

29

Figure 8: Example formalization of the DriveToWorkActivity

30

Figure 9: Example use of the Activity Ontology

6.3.4.3 Future Work

As noted, this representation is influenced by earlier work on Activities in the TOVE ontologies.

However, this ontology does not directly reuse the more recent OWL version of the TOVE

Activity ontology released by the Enterprise Integration Laboratory7. Future work should address

this by attempting to either revise and converge these ontologies or to formalize the relationship

between the two.

6.3.5 Recurring Event ontology

http://ontology.eil.utoronto.ca/icity/RecurringEvent

A specification of recurring events, in particular those that are defined according to calendar

dates (e.g. every Monday, every March), is required to capture information regarding hours of

operation, road restrictions, restrictions on parking policies, and so on. A recurring event is a

means of describing scenarios where some activity is scheduled to recur at some regular interval.

It is important to note that recurring events such as scheduled transit trips and operating hours

represent planned or usual occurrences. For example, while a business may be open at some

7 http://ontology.eil.utoronto.ca/tove/activity.owl

31

recurring intervals, it's possible that given some exceptional circumstances (e.g power failure)

they may not be open during the predefined days and times.

6.3.5.1 The Ontology

The design of this ontology was inspired by previous work on an ontology for city services8 for

the Global City Indicator (GCI) Ontology [24], however due to incompatibilities in the scope and

semantics of the GCI ontology we do not directly reuse it in the iCity TPSO. The GCI Ontology

defines recurring events specifically as “Service” events, whereas the transportation domain

requires a more general notion of recurring events. The GCI Ontology employs the concept of a

time interval to capture when some event recurs, however this may be misleading as recurring

events typically occur at multiple intervals in time. In the iCity TPSO, we opt for a more precise

representation that identifies the individual activities (that occur at a particular time interval) that

correspond to some recurring event.

The Recurring Event Ontology adopts the following representation of recurring events: daily,

weekly, and monthly recurring events (and their related properties) are defined, however the

ontology may be extended with similar definitions of other type of recurring events, as required.

This approach is based on the GCI Ontology work and adapted to provide a more suitable and

complete representation of recurring events for the transportation domain.

An instance of a recurring event corresponds to a class of activities (e.g., all of the occurrences of

a Tuesday, all of the occurrences of the weekly waste pickup). The intuition is that the

occurrences of a recurring event are all the same type of activity. What defines a recurring event

is a combination of the activity type (e.g. a transit trip from point A to point B or the provision of

a service) and the frequency at which it recurs.

The ontology captures the relationship between a recurring event and an activity with the

hasOccurrence property. Classes of recurring events may be captured by identifying their

associated classes of Activities, while individual recurring events may be associated with one or

more instances of an activity.

The Recurring Event ontology reuses the Activity ontology, as the concept of an activity is

central to the notion of a recurring event: the activities are the recurrences. It is important to note

that while the concept of Activity defined in the Activity ontology and is necessary for the

definition of a RecurringEvent, it is not the case that the concept of RecurringEvents is required

for the definition of an Activity. This allows the iCity TPSO to maintain a simpler representation

of events in cases where the notion of recurrence not be required.

Recurring events are also identified based on the regular interval at which they occur; this is

captured using some combination of the hasTime, dayOfWeek, hasMonth, and dayOfMonth

properties. Using these properties, the ontology supports definitions of specializations of the

RecurringEvent class. In particular, subclasses for daily, weekly, monthly, and yearly recurring

events are defined; other classes of recurring events may be defined similarly, as required.

• A DailyRecurringEvent occurs every day. It has a maximum of one associated time – the

start time. Typically, a daily recurring event will occur at the same time every day,

8 http://ontology.eil.utoronto.ca/city-services/city-services.owl#

32

however there may be no commitment to a recurring start time for the event, in which

case no start time is specified. A DailyEvent does not necessarily have a recurring end

time (this would require a constant duration), therefore this is not part of the definition

(although it is possible to specify).

• A WeeklyRecurringEvent recurs regularly on the same day of the week, as specified by

the schema:dayOfWeek property.

• A MonthlyRecurringEvent recurs regularly on the same day of each month, as specified

by the dayOfMonth data property. Note that there is often ambiguity regarding the

semantics of a monthly recurring event: in this formalization, a MonthlyRecurringEvent

is any event that recurs regularly on the same day of each month; other interpretations

sometimes consider events that recur on the same day of week, or first or last day, in

which case the day of month will vary. Such a representation is not included in this

ontology, but could be captured in an extension.

• A YearlyRecurringEvent recurs regularly on the same day of the same month, as

specified by the hasMonth and dayOfMonth properties. As with MonthlyRecurringEvent,

there may be ambiguity regarding the semantics of a yearly recurring event, however this

formalization captures only the notion of an event that recurs on the same day of the same

month (e.g. a birthday).

Exceptions to recurring events may also be defined. For example, a business may normally

operate on Monday-Friday, except for public holidays. Exceptions may also be defined on

specific dates (e.g. June 23, 2018), for example due to construction. If applicable, exceptions

may be defined for recurring events with the recursExcept property. Conversely, so-called

exceptions may involve an additional, unusual occurrences. This is captured with the

recursAddition property.

As with an Activity, a RecurringEvent may be decomposed/composed into simpler/more

complex RecurringEvents to support varying levels of granularity. This decomposition may be

specified with the hasSubRecurringEvent property. The key classes in the Recurring Event

Ontology are summarized in Table 8 and illustrated in Figure 10.

Table 8: Key classes in the Recurring Event Ontology

Object Property Value

RecurringEvent hasOccurrence only activity:Activity

spatial:associatedLocation only spatial:Feature

hasSubRecurringEvent only rec:RecurringEvent

startTime only xsd:time

33

Figure 10: Basic structure of the Recurring Event Ontology

6.3.5.2 An Example

As an example, consider the representation of scheduled transit trips. The Activity Ontology may

be used to define classes of Transit Trip activities, and these classes may be instantiated with

instances that correspond to individual occurrences of these trips, however in order to capture the

endTime only xsd:time

schema:dayOfWeek only DayOfWeek

endDayOfWeek only DayOfWeek

hasMonth only Month

endMonth only Month

dayOfMonth only rdfs:Literal

endDayOfMonth only rdfs:Literal

beginsRecurring only time:TemporalEntity

endsRecurring only time:TemporalEntity

recursExcept only time:TemporalEntity or

DayOfWeek

recursAddition only time:TemporalEntity or

DayOfWeek

DailyRecurringEvent subclassOf RecurringEvent

startTime max 1 xsd:time

WeeklyRecurringEvent subclassOf RecurringEvent

schema:dayOfWeek exactly 1 DayOfWeek

MonthlyRecurringEvent subclassOf RecurringEvent

dayOfMonth exactly 1 rdfs:Literal

YearlyRecurringEvent subclassOf RecurringEvent

hasMonth exactly 1 Month

dayOfMonth exactly 1 rdfs:Literal

34

schedule – i.e. that some trip occurs every day at 08:00am – the notion of a recurring event is

required. A class of recurring events that captures scheduled bus trips may be defined as having

only BusTrip activities as occurrences. Instances of the ScheduledBusTrip class may include

recurring events with different start times, perhaps corresponding to different routes or different

routes on the same trip. An individual scheduled bus trip with a start time of 08:00am

corresponds to multiple occurrences. As daily recurring event, we can expect there will be a

corresponding occurrence of the bus trip activity every day, thus an individual recurring event

(an instance of a scheduled bus trip) will correspond to multiple instances of a particular activity

type (a bus trip). The Recurring Event object provides information on the way in which the

activity recurs (e.g. daily at 08:00am). This example is illustrated in Figure 11.

Figure 11: Example use of the RecurringEvent Ontology

6.3.5.3 Future Work

The relationship between a Recurring (Service) Event and an Event (Activity) should be

revisited in future work. A more detailed axiomatization (in or beyond OWL) may be possible;

for example, based on the properties of a recurring event, additional constraints on its

occurrences (related activities) may be inferred. In addition, more detailed temporal constraints

should be explored, for example to describe the relationship between a Recurring Event and its

sub-Recurring Events: the sub-Recurring Events may only recur during the times at which the

Recurring Event recurs. Finally, an ordering relationship over sub-Recurring Events may be

useful in future implementations, however this is not currently captured or required.

6.3.6 Resource Ontology

http://ontology.eil.utoronto.ca/icity/Resource.owl

35

Resources are an important aspect of activities; they often capture important preconditions and

effects of activities. In the context of transportation planning, resources such as vehicles, income,

and transit passes are of interest with respect to their impact on travel behaviour. The

representation of resources is also important for tasks related to asset management; for example,

transit vehicles and their scheduled maintenance and failure rates are important factors for

predicting the performance of the transit system.

6.3.6.1 The Ontology

The Resource Ontology provides a generic representation of resources that contain core

properties generic across all transportation uses. The view presented in the TOVE model [25]

that "...being a resource is not an innate property of an object but a property that is derived from

the role the object plays with respect to an activity" is adopted. In this sense, Resources are a

class of Manifestations; a Resource is a manifestation of some other class in the ontology when it

plays the role of Resource for some Activity. For example, an instance of a Vehicle, (a

manifestation of some VehiclePD) may also be an instance of a Resource, whereas some other

instance of a Vehicle, (some later manifestation of the same VehiclePD) may not be a Resource,

or it may be a different type of Resource. Intuitively, when a Vehicle is used for transportation,

it is one kind of resource, but when it is being used for scrap metal, it is a different kind of

resource. The definition of a resource is dependent on its participation in an activity, thus the

Resource ontology reuses the Activity ontology.

A Resource may have some amount or availability; it may have some associated location and

may have some owner. As with the precondition and effect properties defined in the Activity

Ontology, the decomposition of an activity must be considered when defining its relationship

with some Resource: there are atomic-level relationships of consumption and use, but also more

general relationships based on inheritance through composition. For example, if Activity A has

subactivity B, then a resource used by Activity B is also used by Activity A.

For additional detail, a Resource maybe classified according to more specific resource types. A

Resource may be either a Divisible Resource or a Non-Divisible Resource, but not both. As the

names indicate, a Divisible Resource may be divided for use or consumption between multiple

activities at any point in time, whereas a Non-Divisible Resource may only be used for a single

activity at once – even if it isn’t fully utilized. For example, a Vehicle used for transportation is

non-divisible but if used for scrap then it may be divisible. The key classes in the ontology are

summarized in Table 9.

Various other types (subclasses) of Resource may be defined as required. A class of resources

may be defined according to its use or consumption by a class of Activities; the specification of

the class of resources may define the quantity of a particular resource that will be used or

consumed by a particular activity. If some resource type is used by an activity, then when the

activity occurs, there must be some resource of that type that is (partially) not available. If a

resource type is consumed by an activity, then the resource and the entity it is a manifestation of

(partially) cease to exist by the end of the occurrence.

Table 9: Key classes in the Resource Ontology

Object Property Value

Resource subClassOf change:Manifestation

36

6.3.6.2 An Example

Consider the representation of a vehicle as an example. A Vehicle might be used as a non-

divisible resource for transportation, and then later as a divisible resource for some metal

recycling process. While these examples might refer to the same car over the span of its lifetime,

each one in fact refers to a different manifestation of the car, and hence a different resource. The

resources differ in their divisibility because each one is defined with respect to a different

activity (e.g. travel, versus metal recycling). A divisible resource may be used by or consumed

by more than one activity, whereas a non-divisible resource may only be used by one activity

(i.e. the object may only be used by one activity at a time). This example is illustrated in Figure

12.

change:existsAt exactly 1 TemporalEntity

spatial:hasLocation only spatial:SpatialFeature

hasCapacity only om:CapacitySize

capacityInUse only om:CapacitySize

activity:participatesIn min 1 activity:Activity

usedInOccurrence only activity:Activity

consumedInOccurrence only activity:Activity

DivisibleResource subClassOf Resource

disjointWith NonDivisibleResource

hasAvailableCapacity only om:CapacitySize

NonDivisibleResource subClassOf Resource

disjointWith DivisibleResource

usedBy exactly 1 activity:Activity

37

Figure 12: Example use of the Resource Ontology

6.3.6.3 Future Work

The current representation takes a fairly general approach. Future versions will likely need to

expand on the types of resources as well as their relationship between activities.

6.3.7 Parthood Ontology

http://ontology.eil.utoronto.ca/icity/Mereology.owl

Notions of parthood are ubiquitous in and beyond the transportation domain. While sometimes

conflated, there are clear distinctions that can be made between different types of parthood and

similar relations. The parthood ontology goes beyond classical mereology and is intended to

provide a generic representation for all part-whole relations of relevance in the transportation

planning domain; thus far, the ontology focuses on the part-of, contained-in, and component-of

relations. The distinctions between these relations may be best explained with the use of

examples. Various items may be contained in my car, but any contained items are distinct from

items that would be identified as a component of (or part of) my car. For example, we may wish

to describe passengers or cargo being contained in a vehicle, but this relation must be

distinguished from the parts and components that make up a vehicle. Similarly, the front of my

car is intuitively a part of my car, but not a component of my car. While we may define

components of a vehicle, different zone systems (wards, postal codes) tend to be imposed based

on abstract rather than physical characteristics and thus are not components, but proper parts of

larger areas. Componenthood is a specialization of parthood; components are distinct from parts

in that they have some identifiable boundaries and may be associated with some function. On the

other hand, containment is distinct from parthood in that it has no bearing on an object’s identity;

38

an object that is contained in another may be removed without (necessarily) changing the

identify of the contain-ing or contain-er objects.

6.3.7.1 The Ontology

The Parthood Ontology introduces the following different relations as object properties: proper-

part-of, component-of, and contained-in. A detailed analysis, presented in [26] reveals clear,

ontological distinctions between each of these relations that may be formalized clearly with a set

of first-order logic axioms. This analysis also identifies the expressive limitations of OWL that

prevent a complete representation of this semantics, and discussed the various possible

approximations. It is important to consider what should be captured, and what distinctions should

be made in the introduction of properties, in contrast with what is actually expressible in the

logic. We cannot completely capture the required semantics in OWL, and some trade-off(s) is

required for any partial specification, (e.g. OWL only allows the specification of transitivity for

simple object properties).

The difficulty with such approximations is that they result in a theory that defines a semantics for

something else entirely: not “part-of”, but “sort-of-part-of”. Inevitably, some semantics are

omitted which may not be required for one application but may be important for another. For

example, if transitivity is a key aspect of some required reasoning, then perhaps a parthood

relation would be defined as transitive, and some omissions would be made with respect to the

formalization other restrictions (e.g. cardinality) that should be applied to the parthood relation.

Certainly, the use of approximations will be required in some cases, for example in order to

support some desired reasoning problems. However, precisely which axiomatization is most

suitable will vary between different usage scenarios. In light of this, the Parthood Ontology omits

a detailed, partial axiomatization in favour of an under-axiomatized specification of the core

relations. The intent of this is to avoid prescribing one trade-off over another. This leaves the

commitment open-ended and variable to suit individual applications’ needs. In other words:

commitments to more specific approximations should be made in specializations of the

properties. The key properties are summarized in Table 10.

This ontology defines the general properties such that the commonality between domain-specific

part-of relations may be captured. More detailed semantics may be defined in extensions of the

properties. This creates a means of indicating the intended semantics of a relation by identifying

the type of parthood that it is intended to capture, while allowing for the specification of different

partial approximations of the semantics (and possibly also specializations of this semantics), as

required. For example, a notion of parthood arises in the description of a building and the units it

is divided into. In this case, this relationship may be identified as a sort of hasComponent

relation; a new property ‘hasBuildingUnit’ may be identified then as a subPropertyOf

hasComponent. We are free to assess which approximations of the component-of relation are the

most suitable for the ‘hasBuildingUnit’ relation, without concern for the implications for other

uses of the component-of relation. The approximation chosen for one type of parthood relation

does not constrain the choice of approximation for another.

Table 10: Key properties in the Parthood Ontology

Property Characteristic Value (if applicable)

properPartOf inverseOf hasProperPart

39

6.3.7.2 An Example

For example, consider the representation of various parts in a vehicle. This is a component-of

type property, therefore we introduce a property ‘hasVehicleComponent’ as a sub-property of the

‘hasComponent’ property. Like hasComponent, hasVehicleComponent should be both transitive

and irreflexive. However, owing to the restriction on non-simple object properties in OWL, it is

not possible to capture both characteristics. In the context of a vehicle’s component

decomposition, it is likely the case that transitivity of the property may be more important than

its irreflexivity. Therefore, the subproperty hasVehicleComponent may be approximated as being

transitive while maintaining the under-axiomatized definition of hasComponent. On the other

hand, it may be the case that for component relation for Buildings and BuildingUnits the anti-

symmetry of the property is the most important aspect to capture. The hasBuildingUnit property

may be approximated as anti-symmetric rather than transitive, thus allowing for different trade-

offs to be made to capture the component-hood relationship in different domains. This example

is illustrated in Figure 13.

Figure 13: Example use of the Parthood Ontology

6.3.7.3 Future Work

In addition to the aforementioned work by [26], various approaches to the partial capture of these

mereological relationships in OWL have been proposed that may be used to extend the ontology

presented here, such as in the W3C’s Best Practices [27], and also in upper ontologies such as

[17]. Future revisions may benefit from considering the relationship between these ontologies

and other OWL formalisms.

This ontology takes a simple approach to generic part-whole relations, however recent work

presents strong arguments for the adoption of mereological pluralism [28]. This work is currently

restricted to physical objects, and so does not address the part-whole relationship between

hasProperPart inverseOf properPartOf

componentOf subPropertyOf properPartOf

inverseOf hasComponent

hasComponent subPropertyOf hasProperPart

inverseOf componentOf

immediateComponentOf subPropertyOf componentOf

containedIn inverseOf contains

contains inverseOf containedIn

immediatelyContainedIn subPropertyOf containedIn

40

abstract objects (e.g. household membership), nevertheless future work should examine the reuse

of these physical part-whole relations as a means to make the iCity ontologies more precise. One

limitation on such an effort may be the expressive restrictions of the OWL language. The

proposed ontology for mereological pluralism is axiomatized in first-order logic, and as we have

already recognized there is a limitation on the expression of part-whole semantics in OWL. On

the other hand, regardless of whether or not the distinctions may be logically formalized, it may

be useful to distinguish them superficially, in the vocabulary and documentation of the ontology.

Finally, there is a close connection between the Parthood Ontology and the Spatial Ontology that

has not yet been explored: the relationship between the spatial properties and the part-whole

properties should be formalized with some theory of mereotopology.

6.3.8 Units of Measure Ontology

uom: http://ontology.eil.utoronto.ca/icity/OM.owl

Units of measure are an important concept due to the observational nature of data collection for

transportation planning. In particular, it is important to capture the relationship between some

quantity and the unit of measure it should be associated with. This allows for a representation in

which the same individual quantity may be associated with several values, according to different

units of measurement.

6.3.8.1 The Ontology

The Ontology of Units of Measure provides a structured vocabulary to describe, among other

things, the different values (measures) that we associate to given quantities. This allows us to

provide greater detail regarding specific measurements that are defined in the ontology. Rather

than simply have a simple data property to describe the length of some road segment as "10 m",

with the units of measure ontology we are able to describe the nature of the quantity (i.e. length),

its value as a Measure (10), and also describe the unit that the measure's numerical value is given

in (e.g. meters). The core formalism is based on the Units of Measure ontology defined by [29].

The Units of Measure ontology is not directly reused as it is quite large and includes many

concepts that are out of scope for city data measures. The relationship with the quantities, and

units of measure defined as classes and individuals in [29] may be formalized in the future if

required. Existing concepts may be added from the original ontology or this ontology may be

extended to capture new units of measure as required.

Quantities, units, and/or measures that are defined using domain-specific concepts (e.g. vehicles,

lanes) are defined by reusing and extending the units of measure ontology in the domain-specific

ontology, such that the necessary concepts may be captured in the appropriate place and the

foundational ontology is not complicated with domain-specific concepts. The key classes used in

the definition of quantities and measures are summarized in Table 11, specializations are

summarized in Table 12.

Table 11: Key classes in the Units of Measure Ontology

Object Property Value

Quantity hasValue only Measure

Measure hasUnit only Unit

41

Table 12: Specialization of the key classes in the Units of Measure ontology

Object Property Value

Length_unit subClassOf Unit

Mass_unit subClassOf Unit

Area_unit subClassOf Unit

Acceleration_unit subClassOf Unit

Volume_unit subClassOf Unit

Speed_unit subClassOf Unit

Amount_of_money_unit subClassOf Unit

Geo_Position_unit subClassOf Unit

gci:Cardinality_unit subClassOf Unit

UnitDivision subClassOf Unit

Cardinality_unit_per_time subClassOf UnitDivision

hasNumerator only gci:Cardinality_unit

hasDenominator only TimeUnit

... subClassOf Unit_of_measure

MonetaryValue subClassOf Measure

hasRelativeYear exactly 1 xsd:gYear

hasUnit only Amount_of_money_unit

gci:Population_measure subClassOf Measure

subClassOf CardinalityMeasure

CardinalityMeasure subClassOf Measure

hasUnit only gci:Cardinality_unit

ValueOfMoney subClassOf Quantity

subClassOf AmountOfMoney

hasValue only MonetaryValue

Length subClassOf Quantity

hasValue only (Measure and hasUnit only

Length_unit)

gci:PopulationSize subClassOf Quantity

hasValue only gci:Population_measure

gci:cardinalityOf exactly 1 gci:Population

CapacitySize subClassOf Quantity

hasValue only gci:Cardinality_measure

gci:cardinalityOf exactly 1 Capacity

CapacityRate subclassOf Quantity

hasValue only (hasUnit only

CardinalityUnitPerTime)

gci:cardinality_of exactly 1 Capacity

Mass subClassOf Quantity

42

6.3.8.2 An Example

For example, consider the representation of the speed of a Vehicle, and a particular point in time.

The Vehicle’s speedometer may indicate a speed of 62 mph, whereas the speed observed by

some external sensor may record a speed of 100 km/h. Both values (ideally) represent the same

quantity but use different units of measure. Using the Units of Measure Ontology, the two

distinct values and their units of measure may be captured and associated with a single instance

of the vehicle’s speed, as illustrated in Figure 14.

Figure 14: Example use of the Units of Measure Ontology.

hasValue only (hasUnit only Mass_unit)

Area subClassOf Quantity

hasValue only (hasUnit only Area_unit)

Volume subClassOf Quantity

hasValue only (hasUnit only

Volume_unit)

Acceleration subClassOf Quantity

hasValue only (hasUnit only

Acceleration_unit)

Speed subClassOf Quantity

hasValue only (hasUnit only Speed_unit)

43

6.3.8.3 A note on populations and cardinality

In order to represent populations, we reuse the following classes from the GCI-Foundation

ontology9: gci:PopulationSize, gci:PopulationSizeMeasure, and gci:CardinalityUnit. The

working paper on the GCI Ontology [24] provides more detail on this approach. The term

population is used in a very general sense: while it may define a population of residents within

some zone, it may also be used to describe the population of vehicles occupying some stretch of

the road network.

The quantity of interest (population size being measured/described) is defined as

gci:Population_Size, a subclass of Quantity. Population_Size has some unit of measure (a

cardinality unit), and has_value some Population_Measure (with an associated numeric value).

The elements associated with a population quantity are captured through the defined_by property

that relates a Population to some class of objects. For example, consider the measurement of the

number of cars on some road segment, we could specify: Population_Size and cardinalityOf only

(Population and definedBy only (Vehicle)). The defining population might be even more

precisely captured for a given Road Segment, X, as depicted in Figure 15: definedBy only

(Vehicle and onSegment value X).

As discussed, the various specializations of Population are defined as required, within the

relevant domain-specific ontology. For example, a vehicle population would be defined in a

module that contains the required concepts of vehicles and road segments. The units of measure

ontology captures the core concepts of Population Size, Population Measure, Cardinality Unit,

and Population, as depicted in Figure 15. Capacity and its associated quantity and measure are

defined similar to population.

Figure 15: Specialization of populations.

9 http://ontology.eil.utoronto.ca/GCI/Foundation/GCI-Foundation-v2.owl#

44

6.3.8.4 Future Work

Future extensions should consider whether it is more accurate to describe the position

coordinates as quantities that are measured in degrees that are relative to a geodetic datum (e.g.

NAD83), as it is important to support the ability to distinguish between different position

systems. In particular, WGS84 and NAD83, which were originally nearly equal are now

considerably different (depending on the area) due to changes that have occurred to the earth

since 1984. Note that http://data.ign.fr/def/ignf/20150505.en.htm may be a relevant ontology.

6.3.9 Observations Ontology

http://ontology.eil.utoronto.ca/icity/Observations

In the iCity TPSO, the Observations ontology is included with the Foundational Ontologies due

to the importance of data collection for transportation planning activities. Data collection efforts

take various forms – whether through surveys, the use of sensors, or manual observation. With

the growth of the Internet of Things, data available from sensors will continue to expand, likely

to include observations about persons, vehicles, and so on. It is important to not only capture the

data that is gathered, but the source of the observations.

6.3.9.1 The Ontology

The Observations ontology reuses the SSN (Semantic Sensor Network) Ontology10, a W3C

recommendation that has been widely adopted to represent sensors and their observations. It is

this widespread use which has motivated the adoption of the SSN Ontology to capture sensors

and their observations in the domain of transportation planning. The SSN Ontology defines a

Sensor as a device that makes some observation, and may be triggered by some stimulus. An

Observation has some feature of interest – the thing whose property is being detected by the

sensor. An observation observes some ObservableProperty. A phenomenon-time (i.e. the time at

which the property was demonstrated) and result-time may be associated with a particular

observation.

The Observations Ontology generalizes concepts from the SSN Ontology and expands the

representation to include observations collected without the use of a sensor. To achieve this, the

concept of an Observer is introduced; an Observer is a generalization of a Sensor and could also

include concepts such as Persons or Surveys. The key concepts are summarized in Table 13.

The SSN Ontology does not make any commitments as to whether instances of ssn:Property

should be generic (e.g. ex:temperature) or specific to the feature of interest (e.g.

ex:mybodytemperature); current documentation suggests that this is a choice for the modeler. On

the other hand, the iCity TPSO prescribes a definition of instances of ssn:Property at a generic

level; this enables the querying of sensors that observe some property (e.g. vehicle presence)

regardless of the location. This is useful as there may be different kinds of sensors that observe

the same properties (e.g. loop detectors vs Bluetooth sensors) and while they might not share the

exact feature of interest, they may be in close enough proximity to be related and so a property

indicating their similarity is desirable.

10 http://www.w3.org/ns/ssn/

http://data.ign.fr/def/ignf/20150505.en.htm
http://www.w3.org/ns/ssn/

45

Table 13: Key classes in the Observations Ontology

6.3.9.2 An Example

As an example, consider the representation of a loop detector and its observations on the road

network. The Observations ontology may be extended to capture the class of Loop Detector

sensors. For a particular Loop Detector, we may specify that it makes some observation at a

particular time, and that the result of this observation is some Vehicle Volume on the

RoadSegment of interest (i.e. the segment being observed). The same observation may be

associated with multiple results. In the case of the loop detector this might include not only

vehicle volume, but also average vehicle speed. This example is illustrated in Figure 16. Note

that the Units of Measure ontology also plays a role in capturing the observed values.

Object Property Value

Observation observedBy only Observer

Observer inverse(observedBy) only Observation

sosa:Sensor subclassOf Observer

sosa:madeObservation only sosa:Observation

sosa:observes only sosa:ObservableProperty

ssn:detects only ssn:Stimulus

sosa:Observation subclassOf Observation

sosa:madeBySensor exactly 1 sosa:Sensor

sosa:hasFeatureOfInterest exactly 1 owl:Thing and only

sosa:FeatureOfInterest

sosa:hasResult exactly 1 owl:Thing and only sosa:Result

sosa:observedProperty exactly 1 owl:Thing and only

sosa:ObservableProperty

sosa:phenomenonTime exactly 1 owl:Thing

sosa:resultTime exactly 1 rdfs:Literal

ssn:wasOriginatedBy exactly 1 owl:Thing and only

ssn:Stimulus

sosa:ObservableProperty subClassOf ssn:Property

inverse ('is proxy for') only ssn:Stimulus

inverse ('observed property') only sosa:Observation

sosa:'is observed by' only sosa:Sensor

sosa:FeatureOfInterest ssn:'has property' min 1 owl:Thing and ssn:Property

sosa:Result sosa:'is result of' min 1 owl:Thing

46

Figure 16: Example use of the Observations Ontology.

6.3.9.3 Future Work

Future work should focus on formalizing the relationship between the values of observable

property, observation, feature of interest, and result: the observable property indicates how (by

what property) the result relates to the feature of interest; e.g. the location of the loop detector

indicates the identity of the feature of interest of its observations. This is beyond the expressive

abilities of OWL and will require the use of some other logical language.

6.4 Contact Ontology

http://ontology.eil.utoronto.ca/icity/Contact

Contact information is relevant for a range of concepts in the transportation domain. For

example, a building may have some associated address, similarly a person or an organization

may have some contact address (or phone number, email, etc). Note that a person’s contact

address may differ from their place of residence. The iContact ontology11 is reused to provide the

core concepts necessary to define this type of information. The Contact ontology extends the

iContact Ontology, introducing a more specific definition of hours of operation as a

specialization of the RecurringEvent class. It also uses concepts from the Spatial Ontology in

order to associate an address with a location.

11 http://ontology.eil.utoronto.ca/icontact.owl

Object Property Value

contact:Address hasStreetNumber exactly 1 xsd:nonNegativeInteger

hasStreet only xsd:string

hasCity exactly 1 schema:city

http://ontology.eil.utoronto.ca/icontact.owl

47

6.4.1 Future Work

In future work it may be useful to consider the addition of properties to better capture data in an

international context; for example the time zone (time:TimeZone) to be associated with an

address, or the primary language of correspondence.

The iContact ontology introduces an object property: “has Geo Coordinates”. Future work

should consider how the relationship between the coordinates of an address and the location it

occupies should be formalized. Are the address coordinates always contained within the location

in space, or are there some exceptions?

6.5 Person Ontology

http://ontology.eil.utoronto.ca/icity/Person

Information about persons is important to capture demographic information from collected data,

and also to represent various actors in the urban system, as required in the context of a

simulation. The Person Ontology defines the core terms necessary for such applications. In doing

so, the ontology commits to a representation wherein a Person represents an object that is subject

to change. To capture this, two classes of Person are defined, as prescribed in the Change

Ontology. The invariant properties of a unique identifier, date of birth, date of death, and sex are

associated with the TimeVaryingEntity subclass, whereas the other attributes are associated with

the Maniefstation subclass. The notion of parent considered here is in the legal context, therefore

it is identified as a variant rather than invariant property. This property may be specialized and

restricted if required, for example hasBiologicalMother: exactly 1 Person. The definition

of sex is distinct from that of a person’s gender, i.e. the sex assigned at birth based on a person’s

reproductive system and other physical characteristics. The key concepts are summarized in

Table 14.

Table 14: Key classes in the Person Ontology

…

spatialloc:hasLocation exactly 1 geo:Feature

subClassOf iContact:Address

contact:HoursOfOperation subClassOf icontact:HoursOfOperation

subClassOf rec:RecurringEvent

Object Property Value

PersonPD subclassOf change:TimeVaryingConcept

equivalentClass change:hasManifestation some Person and

change:hasManifestation only Person

change:existsAt exactly 1 time:Interval

hasPersonID only PersonId

schema:birthDate exactly 1 time:Instant

hasSex exactly 1 Sex

schema:deathDate max 1 time:Instant

48

6.5.1 Future Work

Attributes such as isLicensedDriver are currently captured as (Boolean) data properties. Future

extensions may capture these attributes as object properties, should a more detailed

representation be required (e.g. the introduction of a DriversLicense class, with attributes such as

its category, expiration date, province of issue, etc). This possibility for future extension applies

to many of the defined data properties in the iCity TPSO in general.

6.6 Household Ontology

http://ontology.eil.utoronto.ca/icity/Household.owl

In addition to representing individual persons in the urban system, it is often useful to represent

the households they are members of. The concept of a Household is an important means of

relating actors as well as capturing decisions and activities at a group level.

Here, a Household is defined as a specialization of the class Household as introduced by the

Global City Indicators’ Shelter ontology12. A Household occupies a particular Dwelling,

according to some tenure type. It is defined by this location, so that if the members move (even

collectively), the new residence constitutes a new Household. A Household may have one or

more members, and these members may change over time. So, for example if a child moves out,

the household they were a part of still exists even though they are no longer part of it. Note that a

Household, and likely many other classes may have different definitions in different

contexts/applications. To address this, we may be required to introduce specializations of the

class (e.g. ILUTE_Household, TTS_Household) in future extensions.

Families are distinct from Households. The notion of Family simply makes the commitment that

it is a group of people who are connected via the has-spouse or has-child properties. From these,

we can derive grandparents, aunts, uncles, etcetera. One question to consider is to what degree

12 http://ontology.eil.utoronto.ca/GCI/Shelters/GCI-Shelters.html

Person equivalentClass change:manifestationOf some PersonPD and

change:manifestationOf only PersonPD

subclassOf change:Manifestation

change:existsAt exactly 1 time:TemporalEntity

hasAge exactly 1 om:duration

isLicensedDriver exactly 1 xsd:boolean

schema:parent only Person

schema:spouse only Person

schema:children only Person

hasIncome only MonetaryValue

schema:address some schema:PostalAddress

hasSkill only Skill

hasQualification only Qualification

Sex equivalentClass {person:male, person:female}

49

the general/extended Family concept makes sense or is useful. After a few generations the

concept of a family will become quite large and confusing, with Persons belonging to many

different Families. It may be more useful to consider a relatedTo property between Persons, or

only defining restricted subclasses of Family; for example, different types of Family (e.g.

Immediate, Extended) may be defined.

A Dwelling Unit is a way of describing the place of residence of a household. This could be a

condo unit or apartment, or a house; it could be occupied by various means (e.g. ownership or

rental). In all cases, it will have some associated market value – that may change, and some

address and location – that does not change. These key concepts are illustrated in Figure 17 and

summarized in Table 15 and Table 16 below.

Figure 17: Relationship between key concepts in the Household Ontology

Table 15: Key classes in the Household Ontology

Object Property Value

FamilyPD subclassOf change:TimeVaryingConcept

equivalentClass change:hasManifestation some Family and

change:hasManifestation only Family

change:existsAt exactly 1 time:Interval

Family subclassOf change:Manifestation

equivalentClass change:manifestationOf some FamilyPD and

change:manifestationOf only FamilyPD

change:existsAt exactly 1 time:TemporalEntity

hasFamilyMember min 2 person:Person

HouseholdPD subclassOf change:timeVaryingConcept

equivalentClass change:hasManifestation some Household and

change:hasManifestation only Household

50

Table 16: Key properties in the Household Ontology

6.6.1 Future Work

As noted, future work may require extensions to capture various specializations of the Household

class. For more complex modelling of various relationships between agents, it may also be useful

to extend definitions of the classes beyond OWL to capture the different notions of family

membership and the types (subclasses) of Family that result.

6.7 Organization Ontology

http://ontology.eil.utoronto.ca/icity/Organization.owl

change:existsAt exactly 1 time:Interval

occupies exactly 1 DwellingUnit

Household subclassOf change:Manifestation

subClassOf gci:Household

equivalentClass change:manifestationOf some HouseholdPD and

change:manifestationOf only HouseholdPD

change:existsAt exactly 1 time:TemporalEntity

hasHouseholdMember only person:Person and some person:Person

DwellingUnitPD subclassOf change:TimeVaryingConcept

subclassOf building:BuildingUnitPD

equivalentClass change:hasManifestation some DwellingUnit and

change:hasManifestation only DwellingUnit

change:existsAt exactly 1 time:Interval

schema:address only schema:PostalAddress

spatial:hasLocation only spatial:SpatialFeature

DwellingUnit subclassOf change:Manifestation

subclassOf building:Building and building:BuildingUnit

equivalentClass change:manifestationOf some DwellingUnitPD and

change:manifestationOf only DwellingUnitPD

change:existsAt exactly 1 time:TemporalEntity

occupiedBy exactly 1 Household

hasValue only monetary:MonetaryValue

tenureType only Tenure

Property Characteristic Value (if applicable)

occupiedBy inverseOf Occupies

hasFamilyMember subPropertyOf mer:hasComponent

hasHouseholdMember subPropertyOf mer:hasComponent

51

In addition to persons and the households they form, it is also important to consider

organizations in the context of the urban system. Organizations represent the owners of facilities

such as parking lots, shopping complexes, and even transportation networks. In many cases

organizations also represent employers and thus are accountable for much of the home-work

travel behavior in an urban system.

We define an organization as a company or other sort of group of individuals in the urban system

with some goal(s). An Organization may own Property, including different types of Buildings.

An Organization may have an address, and should have at least 2 members. An Organization has

some Goal(s); this represents some state or complex states, and allows for the representation of

various groups' responsibilities. To capture this kind of structure, an Organization may be

divided into Divisions.

Members of an organization are referred to as Organization Agents. Organization Agents have

goals, authority, and may be members of some team. An Organization Agent plays a Role within

the Organization. In an organizat, a Role has a single (possibly complex) Goal. A Role has some

authority, requires some skill, and may also have some associated processes.

A Firm is a type of organization that has an industry type. A firm has some Employees, and may

have a Business Establishment(s). A Business establishment is a physical location where a Firm

conducts business. Conseqently, a Business Establishment must have a Location and may have

an address.

The Employees of a Firm are employed for some Occupation. An Employee is a type of

Organization Agent. An Employee may be employed at a particular Business Establishment and

may be responsible for one or more Roles within the Organization. An Employee has a

Wage/Salary and may work at some Location (this may be the location of the Firm, an alternate

Location, or a Location that is subject to change). An employee has some employment status. An

employment status may be categorized as one of: full-time regular, part-time regular, full-time-

work-at-home, part-time-work-at-home. All persons who are employees must either be employed

by some Organization, unless the Person is self-employed.

In contrast to an employee, we can define a Student as a kind of Organization Agent (and

Person) who is enrolled in some Educational Institution.

An occupation describes the type of work performed by some employee. Different classes of

occupations may be defined, as required, such as: General Office / Clerical, Manufacturing /

Construction / Trades, Professional / Management / Technical, Retail Sales and Service.

The TOVE Organization ontology13 is reused and extended to define the concepts described

above. It is reused as originally presented by [30], with modifications to account for the

difference in our representation of states, where a Goal is a subclass of StateType, and where

Activities are enabled/caused by state types. This modification also results in the removal of the

StateEmpowerment class. Note that it is possible to introduce a similar concept if required,

however this would likely take the form of a property that relates an organization agent to some

state-types (where the states they are empowered to take an object to, and the object itself, are

described by the state type). The key classes required to define these concepts are summarized in

Table 17.

13 http://ontology.eil.utoronto.ca/tove/organization.html

52

Table 17: Key classes in the Organization Ontology

Object Property Value

OrganizationPD subclassOf change:TimeVaryingConcept

equivalentClass change:hasManifestation some

Organization and

change:hasManifestation only

Organization

change:existsAt exactly 1 time:Interval

Organization subclassOf change:Manifestation

subclassOf tove:Organization

equivalentClass change:manifestationOf some

OrganizationPD and

change:manifestationOf only

OrganizationPD

change:existsAt exactly 1 time:TemporalEntity

schema:address only schema:PostalAddress

tove:has_goal only tove:Goal

tove:consists_of only tove:Division

spatialloc:assiociatedLocation only geosparql:Feature

hasOrgMember min 2 tove:OrganizationAgent

tove:Role tove:has_goal only tove:Goal

tove:has_process only (tove:Process or

activity:Activity)

tove:has_authority only tove:Authority

tove:requires_skill only tove:Skill

tove:has_resource only resource:ResourceType

tove:Goal subClassOf StateType

FirmPD subclassOf tove:Organization

hasFirmId only FirmId

equivalentClass change:hasManifestation some

Firm and change:hasManifestation

only Firm

change:existsAt exactly 1 time:Interval

Firm subclassOf tove:Organization

equivalentClass change:manifestationOf some

FirmPD and

change:manifestationOf only

FirmPD

change:existsAt exactly 1 time:TemporalEntity

schema:address exactly 1 schema:PostalAddress

hasIndustryType only IndustryType

hasEstablishment only BusinessEstablishment

53

BusinessEstablishmentPD subclassOf change:TimeVaryingConcept

change:existsAt exactly 1 time:Interval

hasBusinessId only BusinessId

equivalentClass change:hasManifestation some

BusinessEstablishment and

change:hasManifestation only

BusinessEstablishment

BusinessEstablishment subclassOf change:Manifestation

equivalentClass change:manifestationOf some

BusinessEstablishmentPD and

change:manifestationOf only

BusinessEstablishmentPD

change:existsAt exactly 1 time:TemporalEntity

spatial:hasLocation exactly 1 spatial:SpatialFeature

schema:address only schema:PostalAddress

tove:OrganizationAgent tove:member_of only tove:Division

tove:plays only tove:Role

tove:has_goal only tove:Goal

tove:has_authority only tove:Authority

Employee subclassOf tove:OrganizationAgent

employedAs some Occupation

hasPay some Wage or Salary

worksAt some spatial:SpatialFeature

hasEmploymentStatus only EmploymentStatus

FullTimeEmployee subClassOf Employee

FullTimeHomeEmployee subClassOf FullTimeEmployee

FullTimeRegEmployee (subClassOf FullTimeEmployee) and (not

FullTimeHomeEmployee)

PartTimeEmployee subClassOf Employee

PartTimeHomeEmployee subClassOf PartTimeEmployee

PartTimeTimeRegEmployee (subClassOf PartTimeEmployee) and (not

PartTimeHomeEmployee)

Wage hourlyPay exactly 1 monetary:MonetaryValue

overtimePay only monetary:MonetaryValue

Salary hasAnnualPay exactly 1 monetary:MonetaryValue

tove:Activity equivalentClass activity:Activity

tove:Resource equivalentClass resource:Resource

EmploymentStatus equivalentClass {fulltime_regular, parttime_regular,

fulltime_home, parttime_home}

GeneralOffice subClassOf Occupation

Trades subClassOf Occupation

Professional subClassOf Occupation

Sales subClassOf Occupation

54

6.7.1 Future Work

In future extensions of this work it may be useful to define the distinction between part-time and

full-time employees and students in more detail. The distinction between part-time and full-time

students might also be captured according to some enrollment criteria, if available.

6.8 Building Ontology

http://ontology.eil.utoronto.ca/icity/Building.owl

Buildings are an important concept required to describe the built form of the urban system. In

addition, the representation of a building also provides additional context when describing a

person’s place of residence or employment. A Building is a structure with some location in the

urban system. Many properties of a Building may change over time, (even the exact location of

the Building in may change due to construction), but its Address cannot.

There are different types (subclasses) of buildings, such as House, Apartment Building, Office

Building, and so on. Buildings will contain one or many Building Units. A Building or Building

Unit may be associated with some Building Facility(s) that it contains, e.g. a kitchen, bath, or air

conditioning. The concept of a Building Facility is distinct from the amenities that are not a

physical part of the Building (Unit), but which may be provided as part of the occupation

agreement.

Both Buildings and Building Units have a market value that is subject to change over time. It

also has some height, some footprint area, and some floor area. The floor area is often greater

than the footprint area as it accounts for the area of each floor of the building. However, by

convention floor area excludes unoccupied areas such as basements. These physical properties

are considered variant as it is possible for a building to undergo construction to increase its

dimensions. Buildings and Building Units have associated addresses that are not subject to

change. The key classes and properties are summarized in Table 18 and Table 19.

Table 18: Key classes in the Building Ontology

EducationalInstitution subClassOf Organization

Student subClassOf OrganizationAgent

enrolledIn min 1 EducationalInstitution

FullTimeStudent subClassOf Student

PartTimeStudent subClassOf Student

Object Property Value

BuildingPD subClassOf change:TimeVaryingConcept

equivalentClass change:hasManifestation some Building and

change:hasManifestation only Building

contact:hasAddress only contact:Address

change:existsAt exactly 1 Interval

Building equivalentClass change:manifestationOf some BuildingPD and

change:manifestationOf only BuildingPD

subClassOf change:Manifestation

55

Table 19: Key properties in the Building Ontology

6.8.1 Future Work

In the future, it may be useful to consider adding a BuildingAmenity class to capture common

spaces or features may be included or excluded for occupants by virtue of some (rental)

change:existsAt exactly 1 TemporalEntity

spatial:hasLocation exactly 1 spatial:SpatialFeature

monetary:hasValue only monetary:MonetaryValue

hasBuildingFacility only BuildingFacility

hasBuildingUnit only BuildingUnit

House subclassOf Building

ApartmentBuilding subclassOf Building

OfficeBuilding subclassOf Building

IndustrialBuilding subclassOf Building

BuildingUnitPD subclassOf change:TimeVaryingConcept

change:existsAt exactly 1 Interval

equivalentClass change:hasManifestation some BuildingUnit and

change:hasManifestation only BuildingUnit

unitInBuilding exactly 1 Building

Contact:hasAddress exactly 1 contact:Address

BuildingUnit subclassOf change:Manifestation

equivalentClass change:manifestationOf some BuildingUnitPD and

change:manifestationOf only BuildingUnitPD

change:existsAt exactly 1 TemporalEntity

monetary:hasValue only monetary:MonetaryValue

hasRent only monetary:MonetaryValue

hasUnitSize only om:area

hasRooms only xsd:int

hasFacility

hasBuildingFacility

only Facility

Property Characteristic Value (if applicable)

hasBuildingFacility subPropertyOf mer:hasComponent

hasBuildingUnit inverseOf unitInBuilding

subPropertyOf mer:hasComponent

subPropertyOf mer:contains

unitInBuilding inverseOf hasBuildingUnit

subPropertyOf mer:componentOf

subPropertyOf mer:containedIn

56

agreement. The inclusion of an ontology to capture regulations that may govern some of the

Building attributes (as well as types of buildings in various locations) may also be useful.

6.9 Vehicle Ontology

http://ontology.eil.utoronto.ca/icity/Vehicle.owl

Vehicles represent a means of transportation within the urban system. When modelling travel

behaviour and travel demand, access to and availability of a vehicle (usually defined for

households and families) is an important consideration. Beyond this, a more detailed

classification of vehicles is relevant for capturing parking policies and availability, road access

restrictions, and modelling emissions. The Vehicle Ontology supports the representation of the

attributes of interest for such applications.

• Intuitively, a Vehicle is some provides a means of transportation within the urban system.

We focus on automotive vehicles (in contrast to user-powered vehicles such as bicycles),

however this ontology could be extended to capture such objects if required. Different

types (subclasses) of Vehicle may be defined, as required by a given application:

Motorcycle, Sedan, Truck, Bus, Commercial Cargo Vehicle, and so on. Most often, these

types may be distinguished based on inherent physical criteria. However, in some cases,

other properties such as ownership (e.g. vehicles owned by some municipality may be

characterized as public transit vehicles) may be involved in the definitions. All vehicles

have a Vintage and a Manufacturer (make), these attributes, along with other physical

characteristics such as its seating capacity, are not subject to change. In contrast, vehicles

demonstrate attributes such as location and speed that are subject to change. We have

included relevant terms from schema.org to describe the attributes of a vehicle, as

required. They key classes are summarized in Table 20.

Table 20: Key classes in the Vehicle Ontology

Object Property Value

VehiclePD equivalentClass change:hasManifestation some Vehicle

and change:hasManifestation only

Vehicle

subclassOf change:TimeVaryingConcept

change:existsAt exactly 1 time:Interval

schema:productionDate only time:DateTimeDescription

schema:brand only schema:Brand

schema:vehicleSeatingCapacity exactly 1 xsd:int

schema:cargoVolume only om:volume

57

6.10 Transportation System Ontology

http://ontology.eil.utoronto.ca/icity/TransportationSystem.owl

While most existing work attempts to describe the network based on its physical constructs, we

model the network flow and the physical infrastructure separately. The motivation for this is that

the constraints on transportation flow are something that is applied to the physical infrastructure.

These constraints are distinct from the physical characteristics and so should be defined

separately. Although some constraints may be related, such as flow constraints imposed by the

size of the lane that an arc accesses, this is a specific relationship that should be represented

explicitly rather than conflating the concepts. For example, there is nothing to stop a vehicle

from going the wrong way on a road, except for the flow of traffic that is imposed on the system

(and these constraints may change with time). This division of the physical and abstract

representation results in the definition of two key concepts: the Transportation Network (a

directed graph), and the Transportation Complex (a physical feature where transportation

occurs).

We relate the Network and the Infrastructure by relating an Arc to a Transportation Complex (or

other Road Segment) with the "accesses" property. In this way, we may define an Arc accessing

various Transportation Complexes at different Levels of Detail (LOD).

Both Nodes and Arcs may have implicit locations based on the infrastructure they access,

however unlike the infrastructure classes, Nodes and Arcs are not Spatial Things. A Node may

have a control (e.g. a signal) with a physical presence somewhere else (traffic lights apply to one

side of the intersection, but are actually located on the other side of the intersection); by

separating the physical infrastructure and the network flow we are able to accurately represent

this.

hasCargoCapacityLoad only om:Quantity

schema:driveWheelConfiguration schema:DriveWheelConfigurationValue

schema:fuelConsumption schema:QuantitativeValue

schema:fuelEfficiency schema:QuantitativeValue

schema:fuelType schema:QualitativeValue

schema:mileageFromOdometer schema:QuantitativeValue

schema:numberOfDoors only xsd:int

schema:numberOfAxels only xsd:int

Vehicle equivalentClass change:manifestationOf some VehiclePD

and change:manifestationOf only

VehiclePD

subclassOf change:Manifestation

change:existsAt exactly 1 time:TemporalEntity

schema:purchaseDate only time:DateTimeDescription

hasSpeed only om:speed

spatial:hasLocation only spatial:SpatialFeature

accommodatesWheelchair max 1 xsd:Boolean

accommodatesBicycle max 1 xsd:Boolean

om:quantity subClassOf schema:QuantitativeValue

58

The OTN (Ontology of Transportation Networks14) ontology, as presented by [31], also defines

terms such as nodes, arcs, and road/rail elements. The lack of maintenance and activity on the

OTN poses a potential issue, and the lack of modularity in its structure makes it difficult to use.

Therefore, although its scope is similar, we have elected not to reuse it in the design of this

ontology.

The Transportation System Ontology defines a network as a collection of Nodes and Arcs that

enables transportation. A Network may have some cost associated to its access, and there may be

different sorts of networks: e.g. a public transit network, or perhaps a network that has been

defined by a researcher for the purpose of some analysis.

An Arc is a directed connection in the Network that enables transportation via a particular

Mode(s) from one Node to another. An Arc begins and ends at the source and sink of the Link it

is contained in. An Arc has access to some Spatial Thing (such as a road), which may change

over time. An Arc may impose access restrictions (for example, based on the size of vehicle),

which are subject to change. An Arc may have some cost associated to its travel.

An Arc supports one or more Modes of access. A mode of transportation is a means of

performing travel within the urban system (e.g., personal automotive vehicle, bicycle, foot).

Various modes may be defined, as required. An Arc may have some posted and/or free flow

speed. It may also be described with a volume delay function (VDF). A Link provides a

mechanism to aggregate arcs. A link contains one or more Arcs that represent individual flows of

traffic (e.g. traffic lanes, bicycle lanes).

A Node is a point in the Network at which Arcs are connected. A node as a unique identifier; for

example, as defined in the EMME NCS11. A Node may contain different types of controls:

Network Transfer, Signal Control, and Flow Control. A Node may be associated with specific

location information (e.g. coordinates); note that this may be subject to change. The physical

location of a node (generally larger than a single point) may be inferred based on the locations of

the transportation complexes which it connects. A Node accesses some TransportationComplex,

such as an Intersection. In the future, it may be useful to define other specific types of

TransportationComplexes that are accessed by nodes, (e.g. bus stops).

Various controls may be present at a particular Node: Network Transfer enables transfer between

networks at a given Node; Signal Control controls the flow of transportation between some of

the incoming and outgoing arcs that the Node connects. Signal Controls have specialized

attributes such as the number of phases, phase length, signal timing, type of signal. Note that the

phases and/or the phase length may vary as a function of time of day or other triggers (e.g.

ground sensors, traffic sensors). Flow Control controls the flow of traffic at a given Node.

A Flow Control may be operative/inoperative at different times. For example, "no left turns from

4-6pm". A Flow Control may be a generalization of Signal Control.

A Loop Detector is a kind of Sensor that detects vehicle presence at some point on a road

segment. A Loop Detector is owned by some Organization; it has some location, and is

associated with (has a feature of interest) the particular part of the transportation network (i.e. a

transport:Arc) that it is located on. A Loop Detector makes observations about the vehicle

presence on the road segment that is its feature of interest. The vehicle presence is a proxy for

the occupancy of the road segment and the average vehicle speed on the road segment. Various

14 http://www.pms.ifi.lmu.de/rewerse-wga1/otn/OTN.owl

59

other types of sensors may be relevant in the transportation system. These may be defined

similarly, reusing the SSN ontology in the context of the Transportation System Ontology.

The physical Infrastructure of the transportation system is defined, as required, at different levels

of detail (LOD). Specific types of Transportation Complex (a term we adopt from the CityGML

schema) may be defined according to the Arcs that access them. We define roads as types of

Transportation Complex; this could be extended to include classes for rail, footpaths, waterways,

as required.

A RoadSegmentPD is accessed only by Links that are not accessible by water or air modes.

Different RoadSegments Perdurants will be accessed by Arcs that are accessible by various other

Modes, not necessarily everything else. A Road Segment Perdurant is comprised of Road

Segments that exist over time. A RoadSegment has variant attributes. A RoadSegment has an

owner, access restrictions, and is accessed by some Arc(s) -- all of which may change over time.

A RoadSegment has some location, which is co-located with (contains the locations of) the Arcs

and Nodes it contains. Note that the location of a RoadSegment is variable (e.g. road widening or

other activities do not change the identity of the road element), whereas a RailSegment's is not.

A Road is defined as an aggregation of Road Segments with the same name.

An IntersectionPD is accessed only by NodePDs. An Intersection Perdurant captures the physical

entity of an intersection, which is co-located with various other transportation complexes (e.g.

roads, paths) that pass through it. An Intersection Perdurant is comprised of Intersections that

exist over time. An Intersection exists at some time. It has some location. It may have some

owner and is accessed by some Node. In the future, it may be useful to extend this class and

relate it to certain aspects of the physical infrastructure such as signs, signals, etc.

Classes may be defined for footpaths, bicycle lanes/trails, and so on. Should it be useful, this

representation could be extended to define individual traffic lanes, (e.g. the transportation

complex that is accessed by a single arc). The key classes are summarized in Table 21 and

relationshisp between the classes are depicted in Figure 18

Figure 18: Relationships between key concepts in the Transportation Network (some omissions).

60

Table 21: Key classes in the Transportation System Ontology

Object Property Value

NetworkPD subclassOf change:TimeVaryingConcept

equivalentClass change:hasManifestation some

Network and

change:hasManifestation only

Network

change:existsAt exactly 1 time:Interval

Network subclassOf change:Manifestation

equivalentClass change:manifestationOf some

NetworkPD and

change:manifestationOf only

NetworkPD

change:existsAt exactly 1 time:TemporalEntity

hasNetworkComponent only Arc or Node

NodePD subclassOf change:TimeVaryingConcept

equivalentClass change:hasManifestation some

Node and change:hasManifestation

only Node

change:existsAt exactly 1 time:Interval

hasNodeID max 1 NodeId

Node subclassOf change:Manifestation

equivalentClass change:manifestationOf some

NodePD and

change:manifestationOf only

NodePD

change:existsAt exactly 1 TemporalEntity

inverse

(hasNetworkComponent)

only Network

connectedTo min 1 Arc

hasControl only (NetworkTransfer or

SignalControl or FlowControl)

associatedLocation only spatial:Feature

LinkPD subclassOf change:TimeVaryingConcept

equivalentClass change:hasManifestation some Link

and change:hasManifestation only

Link

change:existsAt exactly 1 time:Interval

startNode exactly 1 NodePD

endNode exactly 1 NodePD

accessesComplex only TransportationComplexPD

Link subclassOf change:Manifestation

61

equivalentClass change:manifestationOf some

LinkPD and

change:manifestationOf only

LinkPD

change:existsAt exactly 1 time:TemporalEntity

containsArc min 1 ArcPD

inverse

(hasNetworkComponent)

only Network (variant or invariant?)

associatedLinkLength exactly 1 om:length

supportsMode min 1 Mode

hasNumLanes exactly 1 xsd:integer

hasVDF max 1 om: Quantity

hasLinkCapacity max 1 (om:Quantity and om:'has

value' only (om:'has unit' only

(om:'has numerator' only

om:CardinalityUnitPerTime) and

(om:'has denominator' only

(om:'Cardinality Unit' and

inverse(om:'has unit') only

(inverse(om:'has value') only

(gci:cardinality_of only

(gci:defined_by only Arc)))))))

hasFreeFlowSpeed max 1 om:speed

hasPostedSpeed max 1 om:speed

hasToll only MonetaryValue

inMunicipality exactly 1 Municipality

inPlanningDistrict exactly 1 PlanningDistrict

ArcPD subclassOf change:TimeVaryingConcept

equivalentClass change:hasManifestation some Arc

and change:hasManifestation only

Arc

startNode exactly 1 NodePD

endNode exactly 1 NodePD

change:existsAt exactly 1 time:Interval

accessesComplex only TransportationComplexPD

containedInLink exactly 1 LinkPD

Arc subclassOf change:Manifestation

equivalentClass change:manifestationOf some

ArcPD and change:manifestationOf

only ArcPD

change:existsAt exactly 1 time:TemporalEntity

accessesComplex only TransportationComplex

inverse

(hasNetworkComponent)

only Network

62

hasControl only AccessRestriction

supportsMode min 1 Mode

hasLaneCapacity exactly 1 om:CapacityRate

hasVDF max 1 om:quantity

hasFreeFlowSpeed max 1 om:speed

hasPostedSpeed max 1 om:speed

hasToll only MonetaryValue

inMunicipality only Municipality

inPlanningDistrict exactly 1 PlanningDistrict

NetworkTransfer controlFor only Node

connectsNetworks min 2 Network

FlowControl controlFor only Node

hasInflow min 1 Arc

hasOutflow min 1 Arc

SignalControlPD subClassOf change:TimeVaryingConcept

equivalentClass change:hasManifestation some

SignalControl and

change:hasManifestation only

SignalControl

change:existsAt exactly 1 time:Interval

controlFor only Node

hasInflow min 1 Arc

hasOutflow min 1 Arc

SignalControl subClassOf change:Manifestation

equivalentClass change:manifestationOf some

SignalControlPD and

change:manifestationOf only

SignalControlPD

change:existsAt exactly 1 time:TemporalEntity

hasPhase only SignalPhase

SignalPhase signalLength only time:DurationDescription

TransportationComplexPD subClassOf change:TimeVaryingConcept

 equivalentClass change:hasManifestation some

TransportationComplex and

change:hasManifestation only

TransportationComplex

TransportationComplex subclassOf change:Manifestation

equivalentClass change:manifestationOf some

TransportationComplexPD and

change:manifestationOf only

TransportationComplexPD

spatial:hasLocation only spatial:Feature

otn:Road hasRoadId only RoadId

63

aggregationOf only RoadSegment

RoadSegmentPD subclassOf TransportationComplexPD

equivalentClass change:hasManifestation some

RoadSegment and

change:hasManifestation only

RoadSegment

hasRoadSegmentId only RoadSegmentId

change:existsAt exactly 1 time:Interval

RoadSegment equivalentClass otn:RoadElement

subClassOf TransportationComplex

equivalentClass change:manifestationOf some

RoadSegmentPD and

change:manifestationOf only

RoadSegmentPD

change:existsAt exactly 1 time:TemporalEntity

spatial:hasLocation only spatial:Feature

inMunicipality only Municipality

IntersectionPD subclassOf change:TimeVaryingConcept

subclassOf TransportationComplexPD

equivalentClass change:hasManifestation some

Intersection and

change:hasManifestation only

Intersection

inverse(accessesComplex) only NodePD

change:existsAt exactly 1 time:Interval

Intersection equivalentClass otn:RoadElement

subclassOf change:Manifestation

subClassOf TransportationComplex

equivalentClass change:manifestationOf some

RoadSegmentPD and

change:manifestationOf only

RoadSegmentPD

change:existsAt exactly 1 time:TemporalEntity

spatial:hasLocation only geosparql:Feature

inverse(accessesComplex) only Node

LoopDetector sosa:detects {vehicle_presence}

sosa:observes {road_occupancy}

sosa:observes {vehicle_volume}

sosa:observes {mean_travel_speed}

sosa:madeObservation only (sosa:Observation and

sosa:hasFeatureOfInterest only

transport:Arc and

sosa:wasOriginatedBy

{vehicle_presence} and

64

6.10.1 Future Work

There are many opportunities to elaborate on the definitions specified above for future work on

the Transportation System Ontology. Lane and link capacity units may be defined in greater

• 15 Note that the classes of observable properties are primarily introduced for consistency

with the SSN representation as a means of capturing the semantics of a class of Sensors

(in this case, Loop Detectors). Any instance of, e.g. RoadOccupancy simply corresponds

to a RoadSegment occupied by some thing, or occupied by nothing:

RoadOccupancy(x) isPropertyOf(x,y) & RoadSegment(y) & [exists (t)

occupiedBy(y,t) | -exists(t) occupiedBy(y,t)]

As a consequence of the 4D representation, an instance of the observable property

RoadOccupancy refers to a property of a road segment at some time, t.

sosa:hasResult RoadOccupancy or

VehicleVolume or

MeanTravelSpeed)

{vehicle_presence} a ssn:Stimulus

{road_occupancy}15 a ssn:ObservableProperty

{vehicle_volume} a ssn:ObservableProperty

{mean_travel_speed} a ssn:ObservableProperty

VehicleVolume subClassOf uom:Quantity

uom:hasValue only (uom:hasUnit only

CardinalityUnitPerTime)

gci:cardinalityOf only LocVehiclePopulation

LocVehiclePopulation*
*precise definition only possible for a
particular location

gci:definedBy only (Vehicle and hasLocation some

Feature)

RoadOccupancy subClassOf uom:Quantity

uom:hasValue only (uom:hasUnit only

RoadOccupancyUnit)

RoadOccupancyUnit subClassOf uom:UnitDivision

uom:hasNumerator only uom:TimeUnit

uom:hasDenominator only uom:TimeUnit

MeanTravelSpeed subClassOf uom:Speed

uom:hasAggregateFunction value {uom:average}

LaneCapacity_unit subClassOf uom:Unit

LinkCapacity_unit subClassOf uom:Unit

{vehicles_per_hour} a LaneCapacity_unit

{vehicles_per_hour_per_lane} a LinkCapacity_unit

65

detail (e.g. with numerators and denominators). In addition, there is a relationship between the

modes of access of a link and those of the arcs it contains that should be captured in a more

detailed representation.

In addition, Municipality and the properties inMunicipality and inPlanningDistrict may apply to

other areas of the domain (e.g. land use, building ontologies), in which case they will be better

defined at a lower (more foundational) level within the ontology. However, as they are currently

only required for the Transportation System sub-ontology, it is currently not clear where and

how this should be done. Future development should consider a better organization and more

detailed definition if and when more extensive requirements for use of these concepts are

identified.

6.11 Travel Costs

http://ontology.eil.utoronto.ca/icity/TravelCost.owl

An extension of the transportation network (and other generic ontologies) is required in order to

represent the different costs associated with accessing and travelling on the networks. These may

take the form of direct costs such as tolls and fares, or indirect costs such as vehicle wear and

tear, gas, and so on. In addition, there may be non-monetary costs associated with travel such as

pollution and travel time. Costs may be associated with Network access, but also with individual

Arcs. They may also be dependent on situational factors such as time of day, or age of traveler.

Travel Costs define the costs associated with accessing the transportation system; a travel cost is

a property of an arc or a transportation network. Other, indirect costs that may vary between

individual trips are defined in the Trip Costs Ontology, described in Section 6.16. In contrast

with travel costs, that are associated with the transportation network, a trip cost is a property of

some instance of travelling.

Two types of travel costs are defined in the ontology: a Distance Fee and an Access Fee. A

distance fee has an associated Cost. It applies to some arc(s) and the fee is specified for a certain

distance (between nodes, or per km). A Distance Fee may apply only at certain times (e.g. during

rush hour) and may apply only to certain modes of transport. An Access Fee has an associated

Cost but does not apply based on distance. Instead of being applied to some arc(s), it is applied to

a particular network.

The key classes are summarized below in Table 22.

Table 22: Key classes in the Travel Cost Ontology

Object Property Value

TravelCost travelCostOf only (transportation:Arc or transportation:Network)

applicableFor only time:TimePeriod or time:CalendarPeriod

applicableTo only transportation:Mode

hasMonetaryCost only monetary:MonetaryValue

transportation:Arc hasTravelCost only TravelCost

transportation:Network hasTravelCost only TravelCost

DistanceFee subclassOf TravelCost

forDistance only om:length

travelCostOf only transportation:Arc

66

6.11.1 Future Work

The types of travel cost identified here are by no means comprehensive. Future work will likely

identify needs and opportunities to extend this representation to capture a wider range of travel

costs.

6.12 Parking Ontology

http://ontology.eil.utoronto.ca/icity/Parking.owl

Parking is a land use consideration, and although it is not part of the transportation network it has

a significant impact on travel behaviour. There are numerous types of parking (street parking, lot

parking, above ground, under ground) and parking policies. All of these attributes, along with the

location of a parking facility, influence a population’s travel behaviour.

The Parking Ontology distinguishes between Parking Areas, Parking Spaces and Parking

Facilities. A Parking Area refers to any area that enables vehicle parking; it can be arbitrarily

divided into sub-parking areas as required. A Parking Space is a parking area that is designated

for a single vehicle, thus it cannot contain any distinct parking areas. Parking Areas and Parking

Spaces may be contained in Parking Facilities (i.e. parking lots). Different sorts of parking areas

and spaces may be defined (e.g. those reserved for individuals with accessibility requirements or

with electric vehicles) Parking facilities may have association that are not typical of arbitrary

parking areas such as contact information or amenities. A parking facility cannot be contained by

any other parking area.

Many of the other attributes of interest are captured in a parking area’s associated policies.

Parking Policies are defined to identify under what terms some parking area is (legally) available

for parking. A parking policy may have a rate, a maximum duration, or an allowable period (i.e.

hours of operation of the parking area). It may apply generally or only to a particular class of

users. Different sorts of parking policies (subclasses) may be defined as required: for example,

free parking, policies for electric vehicles (EVs), or policies for persons with accessibility needs.

A parking Rate has a monetary value, an associated duration, and a ParkingPaymentMethod (e.g.

mobile, license plate entry, cashier, meter). It may have some minimum charge, specified as

either a monetary value or duration (e.g. regardless of the time parked, the customer will be

charged at least $5, or the rate will be applied for at least 30 min). A maximum cost may also be

specified; for example, the rate may be $5 per hour, with a maximum of $20 to park for the

remainder of the policy’s hours of operation. It is not always the case that the maximum cost

coincides with the maximum time-based rate of the hours parked.

The key classes and properties are summarized in Table 23 and Table 24, respectively.

Table 23: Key classes in the Parking Ontology

AccessFee subClassOf TravelCost

travelCostOf only transportation:Network

Object Property Value

ParkingAreaPD subclassOf change:TimeVaryingConcept

67

equivalentClass change:hasManifestation some

ParkingArea and

change:hasManifestation only

ParkingArea

change:existsAt exactly 1 time:Interval

spatial:hasLocation exactly 1 spatial:SpatialFeature

spatial:hasAssociatedLocation only spatial:SpatialFeature

parkingPartOfBuilding only Building

maxAdmittableHeight exactly 1 om:length

maxAdmittableWidth exactly 1 om:length

maxAdmittableLength exactly 1 om:length

has Address only icontact:Address

ParkingArea subclassOf change:Manifestation

equivalentClass change:manifestationOf some

ParkingAreaPD and

change:manifestationOf only

ParkingAreaPD

change:existsAt exactly 1 time:TemporalEntity

hasSubParkingArea only ParkingArea

hasVehicleCapacity only (CapacitySize and gci:cardinality_of

only (gci:defined_by only Vehicle))

hasParkingPolicy only ParkingPolicy

hasChargingStations exactly 1 xsd:integer

resource:ownedBy some Person or Organization

occupiedBy only Vehicle

isOpen exactly 1 xsd:boolean

hasParkingService only ParkingService

parkingAllocatedTo only (Person or Building or Organization

or Feature)

ParkingFacilityPD subclassOf park:ParkingAreaPD

equivalentClass change:hasManifestation some

ParkingLot and change:hasManifestation

only ParkingLot

ParkingFacility subClassOf ParkingArea

subParkingAreaOf exactly 0 ParkingArea

foaf:name only xsd:string

icontact:hasWebsite only xsd:string

icontact:hasAddress only contact:Address

icontact:hasOperatingHours only rec:HoursOfOperation

icontact:hasTelephone only icontact:PhoneNumber

ParkingSpace subclassOf ParkingArea

hasVehicleCapacity some (om:hasValue some (

om:has_numerical_value value 1))

68

Table 24: Key properties in the Parking Ontology

AccessibleSpace subclassOf ParkingSpace

hasParkingPolicy only AccessibilityParkingPolicy (to

define)

EVSpace subclassOf ParkingSpace

hasParkingPolicy only EVParkingPolicty (to define)

ParkingService *may be defined in greater detail in the

future

Valet subclassOf ParkingService

Carwash subclassOf ParkingService

ParkingPolicy hasParkingRate only ParkingRate

maxDuration only time:DurationDescription

appliesDuring only contact:HoursOfOperation

appliesTo only person:Person

appliesFor only vehicle:Vehicle

hasGracePeriod max 1 time:DurationDescription

excludesPublicHoliday exactly 1 xsd:boolean

ParkingRate hasMonetaryCost only om:MonetaryValue

forDuration only time:DurationDescription

hasPayment only ParkingPaymentMethod

appliesTo only person:Person

minParkingCharge only (om:MonetaryValue or

time:DurationDescription)

maxParkingCost only om:MonetaryValue

FreeParkingPolicy hasParkingRate only (ParkingRate and hasMonetaryCost

only (om:MonetaryValue and

om:numerical_value [32]))

Property Characteristic Value (if applicable)

hasSubParkingArea subPropertyOf mer:hasProperPart

domain ParkingArea

range ParkingArea

inverse subParkingAreaOf

subParkingAreaOf subPropertyOf mer:properPartOf

domain ParkingArea

range ParkingArea

inverse of hasSubParkingArea

69

6.12.1 Future Work

A charger for electric vehicles (EV charger) is an amenity which may be provided by some

parking spaces. An EV charger has some model and is capable of charging certain classes of

vehicles; it may be available or unavailable at a given time. As EVs increase in popularity, the

task of locating suitable parking will become more important. Future work should consider

availability in more detail: as predetermined based on the scheduled duration of a vehicle’s

occupancy, and the time left to charge the vehicle.

Future work should also elaborate on the definition of constraints to relate the hours of operation

with the parking lot’s associated parking policies and their hours of operation: a parking lot

should have policies defined during all of its hours of operation. Parking services may also be

defined in greater detail.

6.13 Public Transit Ontology

http://ontology.eil.utoronto.ca/icity/PublicTransit.owl

The public transportation system is an important area of study for transportation planning. The

infrastructure is subject to analysis when considering travel demand and capabilities in the

future. There are also many operational topics of interest to researchers, such as those considered

in Theme 2 of the iCity project: research on supporting strategies for bus bridging in the case of

subway line disruptions, and on avoiding streetcar bunching.

The Public Transit Ontology extends the Transportation System and Trip ontologies in order to

define specialized concepts such as routes, transit trips, and schedules in the context of public

transportation.

A TransitSystem is defined as a collection of Routes. A TransitSystem may be accessed by some

Fare or Transit Pass.

A Route consists of a series of Route Links and may be divided into Route Sections. A Route has

some directionality (captured by the route links). A Route Section is part of some Route and

consists of Route Links. A Route Section begins and ends at a Stop Point. A Route Link is part

of some Route. It is a primitive element of a route, operating on single Arc or Link within the

transportation system.

A Stop Point marks the start or end of a Route Link (e.g. a subway stop or bus stop). A Stop

Point is a subclass of a Node, as defined in the Transportation System ontology. Like a Node, a

Stop Point has an associated Location. A Person may enter or exit the transit vehicle at a Stop

Point. A StationStopPoint is a specialized type of Stop Point that contains multiple Stop Points.

This is distinct from the Station itself (the building).

Transit Incidents, broadly, are events of interest that occur on a particular transit trip. Typically,

they are problematic, unplanned issues resulting in some delay. A TransitIncident is a type of

Activity; it is associated with some station or stop point. An incident may be described (and so

classified) by a predefined code. An incident will have some resulting caused gap (i.e. the time

from the incident until the next train arrives at the station).

TransitTrip is a type of Trip. Transit Trips have specific restrictions and specialized properties. A

Transit Trip occurs on some predefined route. A Transit Trip may also describe a trip on some

smaller part of a Route, i.e. a Route Link. In exceptional cases, is possible that a TransitTrip may

occur off-route (e.g. detours). The start and destination of a Transit Trip must be a Stop Point,

and all Transit Trips must be performed with a Transit Vehicle.

https://w3id.org/icity/PublicTransit.owl

70

A ScheduledTransitTrip is a type of RecurringEvent that only has TransitTrips as occurrences. A

ScheduledTransitTrip is scheduled on some Route, RouteLink, or RouteSection, however it is

not necessarily the case that the trip is accessible to travelers at the beginning stop point. It is

possible that the scheduled trip will not pick up any passengers, or that passengers must pre-

arrange in order to be picked up by the scheduled trip. A Scheduled Transit Trip may have a

pick-up type and/or drop-off type as defined by some Trip Access Arrangement Type: as

scheduled, not available, arranged with agency, or arranged with driver. ScheduledTransitTrips

may be used to specify route and stop timetables. Like a TransitTrip, a ScheduledTransitTrip

may be described as inbound or outbound with the isOutbound data property. Scheduled trips

may be defined to require only the assignment of vehicles that accommodate a wheelchair

rider(s); this property may be captured with the isWheelchairAccessible data property.

The start and end times of scheduled (recurring) transit trips may be used to specify route and

stop timetables.

A TransitVehicle is a type of Vehicle. It has a transit vehicle id. This refers to the identifier

assigned by the transit authority, as opposed to a serial number. Transit Vehicles are owned and

operated by some transit authority. There are specialized types of transit vehicles (e.g. different

types of streetcars), and a restricted set of modes. Transit Vehicles typically only operate on pre-

defined routes, however there are exceptions (e.g. detours, travel for maintenance, etc).

An Access Method is the means of access to a Line. It has a Monetary Value and may be valid

for a specific distance or time.

A RouteTimetable represents schedule information for a particular Route, or Route Link. A

RouteTimetable has an expected travel time (Duration) for the Route, or Route Link. A

StopTimetable has an expected arrival time (Time Instant) for some Stop Point. A Vehicle Block

represents a grouping of transit trips to be allocated to a particular vehicle. A transit trip is part of

a single block and each block may contain multiple transit trips, therefore the allocatedFor

property relating vehicle blocks and transit trips is inverse functional. Each block may be

allocated multiple vehicles, but only one vehicle at a given point in time therefore the

allocatedTo property which relates vehicle blocks to vehicles is functional.

Two complementary properties (one object and one data property) have been added to capture

information regarding transit passes. The data property provides a simply Boolean value to

capture whether a person (at some time) has a transit pass; whereas the object property provides

the ability to associate a particular transit pass (with some properties regarding, for example, its

access, cost, and balance).

The key classes are summarized in Table 25.

Table 25: Key classes in the Public Transit Ontology

Object Property Value

TransitSystemPD subclassOf change:TimeVaryingConcept

equivalentClass change:hasManifestation some

TransitSystem and

change:hasManifestation only

TransitSystem

change:existsAt exactly 1 time:Interval

operatedBy org:OrganizationPD

71

TransitSystem subclassOf change:Manifestation

equivalentClass change:manifestationOf some

TransitSystemPD and

change:manifestationOf only

TransitSystemPD

change:existsAt exactly 1 time:TemporalEntity

hasRoutes only Route

accessBy only AccessMethod

AccessMethod hasMonetaryCost only monetary:MonetaryValue

validFor only (time:DurationDescription or

om:length)

Fare subclassOf AccessMethod

TransitPass subclassOf AccessMethod

RoutePD subClassOf change:TimeVaryingConcept

equivalentClass change:hasManifestation some Route

and change:hasManifestation only

Route

change:existsAt only time:Interval

hasGTFSRouteType exactly 1 {0,1,2,3,4,5,6,7}

Route subclassOf change:Manifestation

equivalentClass change:manifestationOf some RoutePD

and change:manifestationOf only

RoutePD

change:existsAt only time:TemporalEntity

routeShortName max 1 xsd:string

foaf:name max 1 xsd:string

hasSection only RouteSection

operatesOn only ArcPD

hasDisplayColor max 1 xsd:string

hasRouteTextColor max 1 xsd:string

icontact:hasOperatingHours some rec:HoursOfOperation

RouteSection mereology:contains only RouteLink

beginsAtStop exactly 1 StopPoint

endsAtStop exactly 1 StopPoint

operatesOn only ArcPD

RouteLink operatesOn exactly 1 ArcPD

StopPoint subclassOf transport:Node

spatial:hasLocation exactly 1 spatial:Feature

transit:hasStopCode exactly 1 xsd:string

foaf:name min 1 xsd: string

transit:wheelchairBoarding exactly 1 xsd:boolean

AccessibleStopPoint equivalentClass StopPoint and

transit:wheelchairAccessible value true

72

6.13.1 Future Work

There exist a many potential constraints that have not been explored here, but should be

considered in future work. Though not applicable for the TTC, future work should consider a

representation of zone or similar information that may be used in some systems to calculate fare

cost.

Constraints may also be enforced on the times of trips as compared to the hours of operation for

a particular route (i.e. a trip should occur within the defined hours of operation). Constraints may

be added to enforce the types of vehicles that perform a particular transit trip, based upon the

StationStopPoint subclassOf StopPoint

mereology:contains min 1 StopPoint

spatial:associatedLocation some spatial:Feature

TransitIncident subclassOf activity:Activity

associatedWithStop only StopPoint

hasIncidentCode min 1 xsd:string

causedGap only time:Interval

associatedWithTrip only TransitTrip

TransitTrip subclassOf trip:Trip

transit:occursOn only transit:Route or

transit:RouteSection or

transit:RouteLink or

transport:TransportationComplex

transit:viaVehicle exactly 1 transit:TransitVehicle

transit:isOutbound only xsd:boolean

ScheduledTransitTrip subclassOf rec:RecurringEvent

rec:hasOccurrence only transit:TransitTrip

transit:scheduledOn only transit:Route or

transit:RouteSection or

transit:RouteLink

transit:isOutbound only xsd:boolean

transit:isWheelchairAccessible only xsd:boolean

hasPickupType max 1 TripAccessArrangement

hasDropoffType max 1 TripAccessArrangement

TripAccessArrangement equivalentClass {AccessAsScheduled,

AccessNotAvailable,

AccessArrangedViaAgency,

AccessArrangedViaDriver}

TransitVehicle subclassOf vehicle:Vehicle

hasTransitVehicleId exactly 1 xsd:string

VehicleBlock assignedTo only transit:TransitVehicle

assignedFor min 1 ScheduledTransitTrip

person:Person transitPass only TransitPass

hasTransitPass only xsd:boolean

73

specifications of the scheduled trip of which the transit trip is an occurrence. For example, if the

scheduled trip is wheelchair accessible, then any vehicle that performs the transit trips (or is

assigned a block containing the scheduled trip) should accommodate a wheelchair. On the other

hand, it may be the case that vehicle assignments sometimes conflict with the scheduled trip type

and so such constraints may not be accurate/desirable. There is also some potential to incorporate

detailed constraints on the types of routes (bus, rail, etc) and the arcs in the network that the

routes access, according to the mode supported by the arcs. A number of other sorts of

constraints may be explored, in particular if extensions beyond OWL are considered. These

extensions will enable the ontology to support various useful reasoning tasks.

6.14 Land Use Ontology

http://ontology.eil.utoronto.ca/icity/LandUse

Land Use is an important concept for planning. The Land Use Ontology encompasses a range of

concepts related to land use in the generic sense. This includes the concept of Land Use

Classifications, as often prescribed by municipal bylaws, but is also generalized to consider

concepts related to land cover and zoning. This ontology is intended to capture the various ways

of describing or otherwise categorizing land for transportation planning.

A Parcel is defined generically as describing some formally defined area in an urban system.

There may be other types (subclasses) of Parcel such as a traffic zone, or the notion of a parcel

commonly adopted for urban planning. A Parcel may be associated with some type(s) of Land

Use and/or Land Cover; this may change over time. A Parcel may have some associated Area.

This is a variant property as there may be various values with different accuracy from different

sources. A Parcel may have some population that is also subject to change over time.

Land Use Classifications provide a means of describing the land cover/use in a standard way.

Various classification systems are used to identify types of land use. Currently, we include

LBCS, CLUMP, and AAFC.

• The LBCS system is captured through the reuse of the Land Based Classification

Standards (LBCS) Ontology16 presented by [33].The LBCS recognizes different

dimensions of Land Use: Activity, Function, Structure, Site, and Ownership

Classifications. Each dimension is further defined by a taxonomy of specialized

classifications. For each dimension, we introduce an equivalent class name for

disambiguation, e.g. to distinguish between the Activity dimension of land use (we refer

to this as ActivityClassification) and the notion of an Activity in icity.

o Activity Classification: An Activity Classification identifies the activity use of

some Land Parcel.

▪ Residential Activities

16 Not available online

74

▪ Shopping Activities

▪ Industrial Activities

▪ ...

o Function Classification: A Function Classification identifies the economic

function of some Land Parcel,

o Structure Classification: A Structure Classification identifies the type of

structure(s) on some Land Parcel.

o Site Classification: A Site Classification identifies the state of the site

development on some Land Parcel (e.g. is it developed or not?)

o Ownership Classification: An Ownership Classification identifies any constraints

on the use of the land and its ownership for some Land Parcel.

• CLUMPClassification: Canada Land Use Monitoring Program Classification is a type

(subclass) of Land Use classification. CLUMP identifies 15 different types of land use,

each with an associated code used in datasets. We have made the design decision that the

code need not be unique to a particular land use classification, as a classification from

one system may correspond to multiple classifications in CLUMP. CLUMP introduces

the following land use classifications:

o B - Urban built-up area

o E - Mines, quarries, sand and gravel pits

o O - Outdoor recreation

o H - Horticulture

o G - Orchards and vineyards

o A - Cropland

o P - Improved pasture and forage crops

o K - Unimproved pasture and range land

o T - Productive woodland

o U - Non-productive woodland

o M - Swamp, marsh or bog

o S - Unproductive land - sand

o L - Unproductive land - rock

75

o 8 - Unmapped areas (technically not a CLUMP classification but it is used in the

land use data)

o Z - Water areas (technically not a CLUMP classification but it is used in the land

use data)

• AAFCClassification: Agriculture and Agri-Foods Canada Classification is a type

(subclass of) land use classification. The codes are based on the IPCC (International

Panel on Climate Change) protocol. We have made the design decision that the code need

not be unique to a particular land use classification, as a classification from one system

may correspond to multiple classifications in AAFC. AAFC uses the following land use

classifications:

o Unclassified

o Settlement

o Roads

o Water

o Forest

o Forest Wetland

o Trees

o Treed Wetland

o Cropland

o Grassland Managed

o Grassland Unmanaged

o Wetland

o Wetland Shrub

o Wetland Herb

o Other land

The key classes are summarized in Table 26.

Table 26: Key classes in the Land Use Ontology

Object Property Value

ParcelPD subclassOf change:TimeVaryingConcept

76

equivalentClass change:hasManifestation some Parcel

and change:hasManifestation only

Parcel

change:existsAt exactly 1 time:Interval

hasParcelSize exactly 1 om:area

spatial:hasLocation exactly 1 spatial;Feature

Parcel subClassOf lcbcs:Parcel

subClassOf spatial:Feature

subclassOf change:Manifestation

equivalentClass change:manifestationOf some

ParcelPD and

change:manifestationOf only

ParcelPD

change:existsAt exactly 1 time:TemporalEntity

hasLandUse Only LandUseClassification

associatedArea only om:area

hasPopulation only Population

ResidentPopulation subclassOf govstat:Population

EmployedPopulation subclassOf ResidentPopulation

LBCSClassification subclassOf LandUseClassification

ActivityClassification subclassOf LBCSClassification

equivalentClass lbcs:Activity

FunctionClassification subclassOf LBCSClassification

equivalentClass lbcs:Function

StructureClassification subclassOf LBCSClassification

equivalentClass lbcs:Structure

SiteClassification subclassOf LBCSClassification

equivalentClass lbcs:Site

OwnershipClassification subclassOf LBCSClassification

equivalentClass lbcs:Ownership

CLUMPClassification subclassOf LandUseClassification

equivalentTo hasCLUMPCode min 1 xsd:string

AAFCClassification subclassOf LandUseClassification

equivalentTo hasAAFCCode min 1 xsd:string

Unclassified subclassOf AAFCClassification

equivalentTo hasAAFCCode value "11"

Settlement subclassOf AAFCClassification

equivalentTo hasAAFCCode value "21"

Roads subclassOf AAFCClassification

equivalentTo hasAAFCCode value "25"

Water subclassOf AAFCClassification

equivalentTo hasAAFCCode value "31"

77

Forest subclassOf AAFCClassification

equivalentTo hasAAFCCode value "41"

ForestWetland subclassOf AAFCClassification

equivalentTo hasAAFCCode value "42"

Trees subclassOf AAFCClassification

equivalentTo hasAAFCCode value "45"

TreedWetland subclassOf AAFCClassification

equivalentTo hasAAFCCode value "46"

AAFCCropland subclassOf AAFCClassification

equivalentTo hasAAFCCode value "51"

GrasslandManaged subclassOf AAFCClassification

equivalentTo hasAAFCCode value "61"

GrasslandUnmanaged subclassOf AAFCClassification

equivalentTo hasAAFCCode value "62"

Wetland subclassOf AAFCClassification

equivalentTo hasAAFCCode value "71"

WetlandShrub subclassOf AAFCClassification

equivalentTo hasAAFCCode value "73"

WetlandHerb subclassOf AAFCClassification

equivalentTo hasAAFCCode value "74"

OtherLand subclassOf AAFCClassification

equivalentTo hasAAFCCode value "91"

UrbanBuiltUp subclassOf CLUMPClassification

equivalentTo hasCLUMPCode value "B"

MinesQuarriesSandGravelPits subclassOf CLUMPClassification

equivalentTo hasCLUMPCode value "E"

CLUMPCropland subclassOf CLUMPClassification

equivalentTo hasCLUMPCode value "A"

CLUMPWater subclassOf CLUMPClassification

equivalentTo hasCLUMPCode value "Z"

Horticulture subclassOf CLUMPClassification

equivalentTo hasCLUMPCode value "H"

ImprovedPasture subclassOf CLUMPClassification

equivalentTo hasCLUMPCode value "P"

NonProductiveWoodland subclassOf CLUMPClassification

equivalentTo hasCLUMPCode value "U"

OrchardsVineyards subclassOf CLUMPClassification

equivalentTo hasCLUMPCode value "G"

OutdoorRecreation subclassOf CLUMPClassification

equivalentTo hasCLUMPCode value "O"

ProductiveWoodland subclassOf CLUMPClassification

78

6.14.1 Future Work

For a considerable user community, the terms “Land Use” and Parcel” may be associated with a

very specific semantics and thus independent of their definitions, their use may cause confusion

with respect to the intended semantics. We acknowledge that this may be problematic and

therefore future work should re-consider these names, perhaps revising the labels to something

more generic.

In future versions of the ontology, it may be desirable to include an optional relationship for

Parcel that identifies its associated organization (e.g. municipal / federal government, transit

agency, etc.). The representation of populations may also be extended, if required, to capture

various populations at finer levels of granularity such as the employed population, or the

population of students in a given area.

6.15 Trip Ontology

http://ontology.eil.utoronto.ca/icity/Trip.owl

Trips are key activities of interest in the context of transportation planning. As such, it is

necessary to specifically define the concept of a trip and the properties of interest for

transportation planning. In the Trip Ontology, a Trip is defined a kind of Activity wherein a

Person(s) is transported from one location to another via some Mode(s). As with activities, trips

may have participants; they may also be described with specialization of the has participant

property: hasDriver and/or hasPassenger. A Trip starts at some Location and ends at some

Location, and occurs in some Network(s), via some Arc(s) and on some Transportation

Complex(es). A Tour is a sequence of Trips made by one Person. It is defined as a type of Trip

that starts and ends at the same Location.

A Trip may be subdivided into Trip Segments. A Trip Segment describes part of a trip. It may be

used, for example, to identify different parts of the Trip by Mode. A Trip Segment is defined as a

specialization of a Trip that is subactivity of some Trip.

A Trip may incur some cost (monetary or otherwise). These costs are captured in greater detail in

the Trip Cost Ontology.

The key classes in the Trip Ontology are summarized in Table 27.

equivalentTo hasCLUMPCode value "T"

SwampMarshBog subclassOf CLUMPClassification

equivalentTo hasCLUMPCode value "M"

UnimprovedPasture subclassOf CLUMPClassification

equivalentTo hasCLUMPCode value "K"

Unmapped subclassOf CLUMPClassification

equivalentTo hasCLUMPCode value "8"

UnproductiveRock subclassOf CLUMPClassification

equivalentTo hasCLUMPCode value "L"

UnproductiveSand subclassOf CLUMPClassification

equivalentTo hasCLUMPCode value "S"

79

Table 27: Key classes in the Trip Ontology

6.15.1 Future Work

Future work should investigate the representation of restrictions on a trip’s modes and vehicles in

greater detail. These restrictions may become increasingly complex as the characteristics of the

person performing the trip are considered. For example, (legally) a Trip cannot be performed by

a driver who does not hold a valid driver’s licence.

6.16 Trip Costs

http://ontology.eil.utoronto.ca/icity/TripCost.owl

Different costs may be associated with the performance of Trips. These may take the form of

direct costs such as those presented in the Travel Cost Ontology, but there may also be non-

monetary costs associated with individual trips such as pollution and travel time. Trip Costs

capture these costs that vary based on characteristics of a particular trip, such as the vehicle

being used or the person performing the trip; a trip cost is a property of some instance of

travelling therefore the Trip Cost ontology is a direct extension of the Trip Ontology.

Two key types of Trip Cost that are defined in the ontology are Duration Cost and a Distance

Cost. A duration cost has an associated cost in terms of duration; e.g. the length of time to

perform the trip or trip segment. A duration cost may have an associated monetary cost

(valuation); e.g. the monetary cost applied to the length of time taken to perform the trip or trip

cost. A Distance Cost has an associated cost in terms of the distance travelled. It may also have

an associated monetary cost (valuation). The key classes in the ontology are summarized in

Table 28.

Object Property Value

Trip subclassOf activity:Activity

startLoc only spatial:SpatialFeature

endLoc only spatial:SpatialFeature

accessesNetwork min 1 transportation:Network

accessesArc min 1 transportation:Arc

occursOn min 1 transportation:TransportationComplex

viaMode min 1 transportation:Mode

viaVehicle only Vehicle

hasDriver only change:Manifestation

hasPassenger only change:Manifestation

TripSegment subclassOf Trip

inverse (hasSubactivity) min 1 Trip

viaVehicle only vehicle:Vehicle

Tour subClassOf Trip

startLoc startLoc only (inverse (endLoc) Self)

80

Table 28: Key classes in the Trip Cost Ontology

6.16.1 Future Work

Future work should explore the identification and definition of additional types of travel costs, as

required.

6.17 Urban System Ontology

http://ontology.eil.utoronto.ca/icity/UrbanSystem.owl

The urban system covers many different concepts. However, in isolation, these concepts cannot

effectively capture the urban system. The Urban System Ontology combines all of the ontologies

in the iCity TPSO and defines relationships between them required to capture integrated

characteristics and behaviour of the urban system.

Note that the entire Urban System Ontology will not be required for many transportation

planning applications. For targeted applications that focus on a specific area of the urban system,

individual ontologies may be used as required. The purpose of the Urban System Ontology is to

capture the relationships between the various aspects of the urban system and make them

explicit. This will serve to support applications that do span multiple areas or views of the

system, as well as to support the integration of data between projects in multiple areas.

The key classes that are extended and defined in the Urban System Ontology are summarized in

Table 29.

Table 29: Key classes in the Urban System Ontology

Object Property Value

TripCost hasMonetaryCost only om:MonetaryValue

tripCostOf only (trip:Tour or trip:Trip or trip:TripSegment)

DurationCost subclassOf TripCost

hasDurationCost only time:DurationDescription

DistanceCost subclassOf TripCost

hasDistanceCost only om:length or om:MonetaryValue

EnvironmentalCost subclassOf TripCost

hasEnvironmentalCost only CarbonEmissions

VehicleCost subclassOf TripCost

Object Property Value

person:Person memberOf min 1 household:Family

memberOf min 0 household:Household

schema:worksFor some (person:Person or org:Organization)

hasAccess some (vehicle:Vehicle or Bicycle)

hasSchedule some Schedule

Schedule hasActivity only activity:Activity

scheduledFor exactly 1 time:Interval

81

6.17.1 Future Work

Development of the Urban System Ontology to-date has been confined to relationships identified

during the investigation of the motivating scenarios and sample data. Many more relationships

and classes may be defined as the connection between the iCity TPSO is considered (and perhaps

as other ontologies are added). Future work should continue to develop this ontology with

additional axioms, properties, and classes as new use cases are identified and explored.

7 Evaluation

Throughout development, the iCity TPSO were presented to the iCity-ORF researchers and other

stakeholders for review and feedback. These activities served as a kind of informal evaluation

that helped to inform, improve, and validate the design of the ontology. In addition, the ontology

has been formally evaluated against the requirements described in Section 4. In this section, we

review the results of the ontology evaluation with respect to consistency and competency.

household:Family hasMember only person:Person

household:Household hasMember min 1 (household:Family or person:Person)

household:DwellingUnitPD locatedIn some building:Building

org:Organization org:hasOrgMember min 2 person:Person

org:Firm hasEmployee only person:Person

org:BusinessEstablishment hasEmployee only person:Person

org:Employee equivalentClass person:Person and employedBy some (

tove:Organization or person:Person)

Occupation performedBy some person:Person

hasOccupationType only OccupationType

building:BuildingPD locatedOn only landuse:Parcel

building:Building hasOwner min 1 (person:Person or org:Organization)

hasOccupant some person:Person or org:Organization or

org:BusinessEstablishment

hasParking only parking:ParkingArea

vehicle:Vehicle occupiedBy only (Occupant or Cargo)

hasOwner only (person:Person or org:Organization)

hasMode only transportation:Mode

Occupant equivalentClass person:Person and occupies some

vehicle:Vehicle

Cargo equivalentClass not(person:Person) and occupies some

vehicle:Vehicle

transit:TransitSystem hasOwner only org:Organization

transit:Route executedBy only vehicle:Vehicle

trip:Trip subClassOf activity:Activity

performedBy some person:Person

associatedWith only activity:Activity

82

7.1 Consistency

A fundamental requirement for any ontology is consistency. If the axioms in the ontology are

inconsistent, then the classes are unsatisfiable and any data that is mapped into the ontology will

be inconsistent. This inhibits the application of the ontology for data verification. In addition,

any sentence may be deduced from an inconsistent set of axioms, so this is also problematic for

any reasoning applications. From a basic ontology design perspective, if the axioms are

inconsistent then there is something wrong with the way the domain has been formalized; the

ontology contains some set of statements that in some way contradict each other. Similarly, it is

important to check for (and avoid) any unsatisfiable classes. In a consistent ontology it is still

possible that select classes may not be satisfiable. In such cases it is impossible to instantiate the

class with any data and maintain consistency. The ontology has been evaluated for both

consistency and (absence of) unsatisfiable classes using the Pellet OWL reasoner. One

unsatisfiable class was identified, however the class (time:January17) is not reused in the

extensions and is deprecated in the version of the W3C Time Ontology that is imported by the

iCity TPSO.

7.2 Competency

The Requirements stage of ontology development resulted in the identification of five motivating

scenarios and ## associated competency questions. Competency questions provide guidance for

ontology design, as well as a clear set of criteria against which the ontology may be evaluated.

The evaluation focuses on determining whether the ontology is sufficient to formalize the

identified competency questions. It is straightforward to demonstrate that the requirements are

satisfied by formalizing each of the competency questions using the ontology. Since the ontology

has been formalized in OWL 2, the usual mechanism of accessing the data it encodes with be

with the SPARQL query language18. Therefore, the ontology has been evaluated with the use

SPARQL to formalize each of the identified competency questions. Implicit in each formalism is

a mapping between the natural language used in the requirement and the terms defined in the

ontology. This mapping will be made explicit in the application of the ontology, which addresses

the mapping models required to encode information in datasets as instances in the ontology.

In the following, we demonstrate the results of evaluation by formalizing each of the identified

competency questions in SPARQL. The following namespaces will be used in addition to the

namespaces defined in the previous section:

• PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

• PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

• PREFIX owl: <http://www.w3.org/2002/07/owl#>

• PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

17 http://www.w3.org/2006/time#January

18 https://www.w3.org/TR/sparql11-overview/

83

• PREFIX bif: <http://www.openlinksw.com/schemas/bif#>

• PREFIX schema: <http://schema.org/>

• PREFIX time: <http://www.w3.org/2006/time#>

• PREFIX geo: <http://www.opengis.net/ont/geosparql#>

• PREFIX spatial: <http://ontology.eil.utoronto.ca/icity/SpatialLoc/>

• PREFIX change: <http://ontology.eil.utoronto.ca/icity/Change/>

• PREFIX activity: < http://ontology.eil.utoronto.ca/icity/Activity/>

• PREFIX re: <http://ontology.eil.utoronto.ca/icity/RecurringEvent/>

• PREFIX resource: <http://ontology.eil.utoronto.ca/icity/Resource/>

• PREFIX parthood: <http://ontology.eil.utoronto.ca/icity/Mereology/>

• PREFIX om: <http://ontology.eil.utoronto.ca/icity/OM/>

• PREFIX obs: <http://ontology.eil.utoronto.ca/icity/Observations/>

• PREFIX icontact: <http://ontology.eil.utoronto.ca/icontact.owl#>

• PREFIX contact: <http://ontology.eil.utoronto.ca/icity/Contact>

• PREFIX person: <http://ontology.eil.utoronto.ca/icity/Person/>

• PREFIX household: <http://ontology.eil.utoronto.ca/icity/Household/>

• PREFIX org: <http://ontology.eil.utoronto.ca/icity/Organization/>

• PREFIX building: < http://ontology.eil.utoronto.ca/icity/Building/>

• PREFIX vehicle: < http://ontology.eil.utoronto.ca/icity/Vehicle/>

• PREFIX transport: < http://ontology.eil.utoronto.ca/icity/TransportationSystem/>

• PREFIX parking: < http://ontology.eil.utoronto.ca/icity/Parking/>

• PREFIX transit: <http://ontology.eil.utoronto.ca/icity/PublicTransit/>

• PREFIX landuse: < http://ontology.eil.utoronto.ca/icity/LandUse/>

• PREFIX trip: <http://ontology.eil.utoronto.ca/icity/Trip/>

Many of the competency questions pertain to some given individual of interest (e.g. a particular

household or traffic zone). We capture such cases with a placeholder denoted in curly brackets

(e.g. {household-1}) to illustrate where the individual or individuals of interest would be

substituted.

On the role of GeoSPARQL Functions: In practice, the spatial relationships between objects

may not be encoded in the knowledge base. In such cases, GeoSPARQL functions may be

84

employed in the query to compute these relationships using the coordinate data defined for the

geo:Geometry objects. As the implementation of these functions is subject to some variation

between triple stores, for the purposes of evaluation we design the queries under the assumption

that the spatial relationships between geo:Feature objects are given. This allows us to maintain a

consistent, triple store-independent formalization.

7.2.1 CQs for Land Use and Transportation Simulation

CQ1-1: What trips originated/ended19 in a given zone?
SELECT ?trip WHERE {

?trip rdf:type trip:Trip.

?trip trip:startLoc ?sloc.

{zone} a landuse:TrafficZone.

loc:hasLocation ?zloc.

?zloc geo:contains ?sloc.

}

CQ1-2: What is the occupation breakdown of the travelers whose trips originated/ended in a

given zone?
SELECT ?occupation (COUNT ?trip as ?trips) WHERE {

?trip rdf:type trip:Trip.

?trip trip:startLoc ?sloc.

{zone} a landuse:TrafficZone.

loc:hasLocation ?zloc.

?zloc geo:contains ?sloc.

?trip urban:tripPerformedBy ?p.

?o org:performedBy ?p.

?o org:hasOccupationType ?occupation.

} GROUP BY ?occupation

CQ1-3: What were the purposes of the trips that originated/ended in a given zone?
SELECT ?trip ?activitytype WHERE {

?trip rdf:type trip:Trip.

?trip trip:startLoc ?sloc.

{zone} a landuse:TrafficZone.

loc:hasLocation ?zloc.

?zloc geo:contains ?sloc.

?trip trip:associatedwith ?activity.

?activity rdf:type ?activitytype.

}

CQ1-4: In a particular time period, how many trips originated/ended in a given zone?

19 This and subsequent queries may be easily repurposed to retrieve trips with a particular end zone by replacing

trip:startLoc with trip:endLoc.

85

SELECT (COUNT ?trip as ?trips) WHERE {

?trip rdf:type trip:Trip.

?trip trip:startLoc ?sloc.

{zone} a landuse:TrafficZone.

loc:hasLocation ?zloc.

?zloc geo:contains ?sloc.

} GROUP BY ?zloc

CQ1-5: What were the transportation mode(s) taken by trips that originated/ended in a given

zone?
SELECT DISTINCT ?mode WHERE {

?trip rdf:type trip:Trip.

?trip trip:startLoc ?sloc.

{zone} a landuse:TrafficZone.

loc:hasLocation ?zloc.

?zloc geo:contains ?sloc.

?trip trip:viaMode ?mode.

}

CQ1-6: Who are the members of a particular household?

The following query returns all persons who are or have been members of a household, the

change:existsAt property would need to be used to constrain the results to household

members at a particular point in time.
SELECT ?person WHERE {

{household} rdf:type household:HouseholdPD.

{household} change:hasManifestation ?hhld.

?hhld household:hasHouseholdMember ?person_at_t.

?person_at_t change:manifestationOf ?person.

}

CQ1-7: What trips were performed, by which members of a particular household?
SELECT ?person ?trip WHERE {

{household} rdf:type household:HouseholdPD.

{household} change:hasManifestation ?hhld.

?hhld household:hasHouseholdMember ?person_at_t.

?person_at_t change:manifestationOf ?person.

?trip urbansys:tripPerformedBy ?person_at_t.

}

CQ1-8: What were the purposes of the trips performed by members of a particular

household?
SELECT ?person ?trip ?activity WHERE {

{household} rdf:type household:HouseholdPD.

{household} change:hasManifestation ?hhld.

?hhld household:hasHouseholdMember ?person_at_t.

?person_at_t change:manifestationOf ?person.

86

?trip urbansys:tripPerformedBy ?person_at_t.

?trip urbansys:associatedWith ?occ.

?occ rdf:type ?activity.

}

CQ1-9: What is the age, sex, and occupation of the traveler who performed a particular trip?
SELECT ?age ?sex ?occ WHERE {

{trip} urbansys:tripPerformedBy ?person_at_t.

?person_at_t change:manifestationOf ?person.

?person_at_t person:hasAge ?d.

?d om:hasValue ?m.

?m om:has_numerical_value ?age.

?occ org:performedBy ?person_at_t.

?person person:hasSex ?sex.

}

CQ1-10: What land use classification is associated with a particular parcel?
SELECT ?class WHERE {

{parcel} change:hasManifestation ?parcel_at_t.

?parcel_at_t landuse:hasLandUse ?landuse.

?landuse rdf:type ?class.

}

7.2.2 CQs for Transit Research

CQ2-1: What date and time has a subway incident occurred?
SELECT ?datetime WHERE{

{incident} rdf:type transit:TransitIncident.

{incident} activity:beginOf ?t.

?t time:inXSDDateTimeStamp ?datetime.

}

CQ2-2: What are the locations of vehicles on a particular route after the occurrence of a

subway incident?
SELECT ?x ?t ?td1

WHERE {

 ?x a transit:TransitVehicle.

 ?x transit:onRoute ?route.

 ?x change:existsAt ?t.

 ?t time:inside ?t1.

 ?t1 time:inXSDDateTimeStamp ?td1.

 ?x spatial:hasLocation ?f.

 ?f geo:hasGeometry ?g.

 ?g geo:asWKT ?gwkt.

 {incident} rdf:type transit:TransitIncident.

{incident} activity:beginOf ?t_incident.

87

?t_incident time:inXSDDateTimeStamp ?dt_i.

 FILTER(?route = {route})

 FILTER(?td1 > dt_i)

}

CQ2-3: Are any buses located more than a certain distance from their assigned route at a

given point in time?20
SELECT ?x ?g ?route_pd ?g_trip ?d

WHERE

{

 ?x a transit:TransitVehicle.

 ?x transit:onRoute ?route.

 ?x spatial:hasLocation ?f.

 ?f geo:hasGeometry ?g.

 ?g geo:asWKT ?g_wkt.

 ?route icontact:hasOperatingHours ?ho.

 ?ho re:hasSubRecurringEvent ?trip.

 ?trip spatial:hasLocation ?f_trip.

 ?f_trip geo:hasGeometry ?g_trip.

 ?g_trip geo:asWKT ?g_trip_wkt.

 FILTER(bif:st_distance(?g_wkt,?g_trip_wkt) <= {distance})

}

7.2.3 CQs for Smart Parking Applications

Note that parking information is one example of a scenario where the majority of the data of

interest is subject to change, (currently) at a low frequency. In such cases, rather than formulate

queries for specific points in time, it is sufficient to organize the results for time-variant

properties by their associated timepoint or interval. In the future as more real-time data becomes

available, the nature of this may change and there will be more queries oriented toward data

associated with specific timepoints (i.e. “now”).

CQ3-1 What is the address of the parking lot P?

The following query returns the street number and name for a particular parking lot. Other

attributes of address exist and may be referenced as required. As it is possible for the

address to change over time, the query returns all distinct values for the lot’s address.
SELECT DISTINCT ?num ?street MAX(?t) WHERE {

{lotpd} rdf:type parking:ParkingAreaPD;

20 Note: the precise formalism of this query will vary depending on the triple store and how it has implemented the

required GeoSPARQL functions. If no GeoSPARQL or other similar spatial functions have been implemented, then

this query may not be successfully answered. In some cases it may be possible that the spatial relations of interest

are pre-computed and populated in the triple store.

88

change:hasManifestation ?lot.

?lot rdf:type parking:ParkingFacility;

change:existsAt ?t

icontact:hasAddress ?a.

?a icontact:hasStreetNumber ?num.

?a icontact:hasStreet ?street.

}

CQ3-2 What is the capacity of parking lot P?

The capacity of a parking lot may change over time (e.g. as a result of layout changes), thus

this query returns all distinct capacities of the parking lot.
SELECT DISTINCT ?capacity MAX(?t) WHERE {

{lotpd} rdf:type parking:ParkingAreaPD;

change:hasManifestation ?lot.

?lot rdf:type parking:ParkingArea;

change:existsAt ?t

parking:hasVehicleCapacity ?c.

?c om:has_value ?c_measure.

?c_measure om:has_numerical_value ?capacity.

}

CQ3-3 Is it accessible by disabled people, and if so how many parking spots are for disabled

vehicles?

The allocation of accessible parking spaces may change over time thus a temporal dimension

is also included in the query. The result will return the number of accessible parking

spaces (if any) on record for a parking lot, including changes made to this figure over

time.
SELECT ?t (COUNT(?p AS ?accessible_spot)) WHERE {

{lotpd} rdf:type parking:ParkingAreaPD;

change:hasManifestation ?lot.

?lot rdf:type parking:ParkingArea;

change:existsAt ?t

parking:hasSubParkingArea ?p.

?p rdf:type parking:AccessibilityParkingSpace.

} GROUP BY ?t

CQ3-4 Is there a height limit for vehicles for a parking lot P?
SELECT ?hlimit WHERE {

{lotpd} rdf:type parking:ParkingAreaPD;

parking:maxAdmittableHeight ?hquantity.

?hquantity om:has_value ?hmeasure.

?hmeasure om:has_numerical_value ?hlimit.

}

CQ3-5 What are the geographic coordinates for parking lot P?

89

In this query we return the geocoordinates associated with the parking lot’s address. An

alternative approach might query for the associated spatial feature (i.e. the region

occupied in space) instead.
SELECT DISTINCT ?coord MAX(?t) WHERE {

{lotpd} rdf:type parking:ParkingAreaPD;

change:hasManifestation ?lot.

?lot rdf:type parking:ParkingFacility;

change:existsAt ?t

icontact:hasAddress ?a.

?a icontact:hasGeoCoordinates ?coord.

}

CQ3-6 What building is a particular parking lot located in?
SELECT ?building WHERE {

{lotpd} rdf:type parking:ParkingAreaPD;

parking:parkingPartOfBuilding ?building.

}

CQ3-7 Is a particular parking lot open to the public at a given time?
ASK {

SELECT DISTINCT ?coord MAX(?t) WHERE {

{lotpd} rdf:type parking:ParkingAreaPD;

change:hasManifestation ?lot.

?lot rdf:type parking:ParkingFacility;

icontact:hasOperatingHours ?hours.

?hours recurring:startTime ?open;

recurring:endTime ?close.

FILTER({time} >= ?open && {time} <= ?close)

}

CQ3-8 How much does it cost to park in a particular parking lot?

In this query we return the cost and the duration at which it is applied; for example, 5 dollars

per 1 hour. It is also possible to retrieve more detail on the cost such as the currency.
SELECT DISTINCT ?cost ?perhour MAX(?t) WHERE {

{lotpd} rdf:type parking:ParkingAreaPD;

change:hasManifestation ?lot.

?lot change:existsAt ?t;

parking:hasParkingPolicy ?policy.

?policy parking:hasParkingRate ?rate.

?rate parking:hasMonetaryCost ?mval.

?mval om:has_value ?mmeasure.

?mmeasure om:has_numerical_value ?cost.

?rate parking:forDuration ?d.

?d time:hours ?perhour

}

90

CQ3-9 What types of payment are accepted at a particular parking lot?
SELECT DISTINCT ?paymethod MAX(?t) WHERE {

{lotpd} rdf:type parking:ParkingAreaPD;

change:hasManifestation ?lot.

?lot change:existsAt ?t;

parking:hasParkingPolicy ?policy.

?policy parking:hasPaymentMethod ?paymenthod.

}

CQ3-10 How many parking spots are designated for electric vehicles in a particular parking

lot?
SELECT ?t (COUNT(?p AS ?ev_spot)) WHERE {

{lotpd} rdf:type parking:ParkingAreaPD;

change:hasManifestation ?lot.

?lot rdf:type parking:ParkingArea;

change:existsAt ?t

parking:hasSubParkingArea ?p.

?p rdf:type parking:EVParkingSpace.

} GROUP BY ?t

CQ3-11 What types of electric vehicle chargers are available in a particular parking lot?
SELECT DISTINCT ?chargetype MAX(?t) WHERE {

{lotpd} rdf:type parking:ParkingAreaPD;

change:hasManifestation ?lot.

?lot change:existsAt ?t;

parking:hasEvCharger ?charge.

?charge rdf:type ?chargetype.

}

7.2.4 CQs for ATIS via ITSoS

CQ4-1: What are the averages of the TTI_Max values that have been observed over some

period of time?
SELECT ?x ?wayID

WHERE {

?y a transport:MeanTTI_Max.

?y om:hasValue ?measure.

?measure om:numerical_value ?x.

?y om:aggregateOver ?t_interval.

?t_interval time:hasBeginning ?t1.

?t1 time:inXSDDateTime ?dt1.

?t_interval time:hasEnd ?t2.

?t2 time:inXSDDateTime ?dt2.

?y om:aggregateOf ?y_2.

?y_2 om:aggregateOver ?wayID.

FILTER(?dt <= {time}^^xsd:dateTime && ?dt2 >=

{time}^^xsd:dateTime)

91

}

CQ4-2: What are the averages of the TTI_Max values that have been observed at some

location?
SELECT DISTINCT ?x ?t_interval ?dt1 ?dt2

WHERE {

?y a transport:MeanTTI_Max.

?y om:hasValue ?measure.

?measure om:numerical_value ?x.

?y om:aggregateOver ?t_interval.

?t_interval time:hasBeginning ?t1.

?t1 time:inXSDDateTime ?dt1.

?t_interval time:hasEnd ?t2.

?t2 time:inXSDDateTime ?dt2.

?y om:aggregateOf ?y_2.

?y_2 om:aggregateOver {location id}.

}

CQ4-3: What are the averages of the TTI_Max values that have been observed at some

location, over some period of time?
SELECT DISTINCT ?x ?dt1 ?dt2

WHERE {

?y a transport:MeanTTI_Max.

?y om:aggregateOf ?y_2.

?y_2 om:aggregateOver {location id}.

?y om:hasValue ?measure.

?measure om:numerical_value ?x.

?y om:aggregateOver ?t_interval.

?t_interval time:hasBeginning ?t1.

?t1 time:inXSDDateTime ?dt1.

?t_interval time:hasEnd ?t2.

?t2 time:inXSDDateTime ?dt2.

FILTER(?dt1 <= {time}^^xsd:dateTime && ?dt2 >=

{time}^^xsd:dateTime)

}

7.2.5 CQs for ArcGIS Query Support

CQ5-1: What neighbourhood(s) does a particular route go through?

CQ5-2: What types of land use does a particular route go through?

CQ5-3: What types of land cover does a particular route go through?

CQ5-4: What points of interest does a particular route pass by?

CQ5-5: What types of road does a particular route travel on?

CQ5-6: What (if any) parts of a route travel on a road segment that is above grade?

CQ5-7: What (if any) parts of a route travel on a road segment that is below grade?

92

8 Application

Application of the ontology serves to ground its evaluation by demonstrating how it may be used

in practice -- in particular, how its capacity to represent the domain may be used to address some

motivating scenarios. Applying the ontology for a demonstrates how the ontology can be used to

represent the data of interest and produce answers for the competency questions. It also provides

insight into the required architectures for ontology-based solutions to the motivating scenarios.

Applications of the iCity ontology were explored as case studies derived from the motivating

scenarios identified during the iCity-ORF project. These case studies represent a small subset of

possible applications of ontologies for urban informatics. Beyond serving as concrete examples

for how the ontology may be used, these projects serve to demonstrate the sufficiency of the

ontology to integrate, capture, and retrieve the data of interest.

In the sections below, we provide an overview of each of the case study applications of the iCity

Ontology. Mappings from the data sources into the ontology are described in detail in the

appendices, and the R2RML files are available in the project’s GitHub repository.

8.1 Exploration of Travel Model Data

Based on the motivating scenario described in Section 5.1, one possible application for the

ontology would be to support the exploration of simulation results. In this case study, we focus

on data generated by the TASHA travel model. We leverage the ontology as a means of

understanding and exploring its output.

Rather than simply provide access to a SPARQL endpoint to evaluate the CQs of interest, in this

application a data access tool, the Linked Data Reactor21 (LD-R), was implemented as an

additional layer to support easy exploration of the model output. The resulting architecture is

depicted in Figure 20. The LD-R tool provides a layer between the user and the triple store;

rather than design and implement queries directly, a user is able to explore the data by browsing

through a pre-designed selection of “facets”. A screenshot of the implementation in Figure 19

illustrates some of the configured facets and the display that results from interacting with them.

The facets defined for this application are described in more detail below, and the configuration

files are available in GitHub at:

https://github.com/EnterpriseIntegrationLab/icity/tree/master/applications/TASHA/configs .

21 http://ld-r.org

https://github.com/EnterpriseIntegrationLab/icity/tree/master/applications/TASHA/configs

93

Figure 19: Screenshot of the LD-R interface implemented to explore the TASHA output data.

Figure 20: Architecture with LD-R supported data access.

8.1.1 Summary of Facets

Facets of the data are displayed based on the properties of the objects in the triple store. Selecting

the values displayed for a particular facet enables the user to constrain the results displayed in

order to further explore other facets of the data.

For example, if a user selects the “Start zone ID” property then the LD-R will display a facet

showing the distribution of trips starting at different zones. The user may select additional

properties, or they can select one or more zone ids to narrow the scope of the analysis. If Zone X

94

is selected, then any other facets that are displayed will only display properties for trips that

started at Zone X. This allows the user to explore answers to questions such as: “what is the

distribution of modes for trips going from zone X to zone Y”? or “What is the most common

activity at origin for trips that are taken with transit?”

In order to support the sort of analysis required, it is useful to group the properties into the

particular object types for which they apply; in this case, we have created “Trip-focused” and

“Person-focused” categories.

Trip-focused:

• Start zone map, End zone map: displays the start and end zone of trips on a map. Start

and end zones may be selected to narrow the scope of trips of interest.

• Start zone ID, End zone ID: display the zone IDs of the trips’ origins and destinations.

• Start time, End time: displays the start and end times of a trip, encoded in

xsd:dateTimeStamp format. The times are assigned a default date of 01-01-2019.

• Trip Mode: displays the mode type used for the trip.

• Activity at origin, Activity at destination: displays the activity types performed at start

and end of the trip (i.e. the activities directly preceding and following the trip).

• Traveler Type: displays the type (class) of person who performed the trip.

• Traveler Age: displays the age of the person who performed the trip.

• Traveler has transit pass: a boolean value indicating whether the person who performed

the trip has a transit pass.

• Traveler’s school zone: displays the zone id of the school where the person performing

the trip is enrolled (if applicable).

• Traveler’s work zone: displays the zone id of the location where the person performing

the trip is employed (if applicable).

• Traveler’s occupation: displays the class of occupation of the traveler (if employed).

Person-focused:

• Age: displays the age range of persons in the TASHA output.

• Transit pass: displays a Boolean value indicating the number of persons with (true) and

without (false) transit passes.

• School zone ID: displays the distribution of the zone ids of the schools where people are

enrolled.

95

• Work zone ID: displays the distribution of zone id of the locations where people are

employed.

• Occupation: displays the distribution of occupation types for people in the simulation.

• Travels from zone, Travels to zone (map view): displays a map view of the zones where

the selected persons travel from and to.

• Travels from zone ID, Travels to zone ID: displays the distribution of zone IDs of the

locations where the selected persons travel to and from.

• Trip start times, Trip end times: displays the distribution of trip start times and end times

for trips performed by the selected persons.

• Travels via mode: displays the mode of travel for trips performed by the selected persons

8.1.2 Data Mappings

In addition to providing a mechanism to query the simulation output, defining mappings to the

ontology serves to formalize the data such that its semantics is clear. This provides a level of

documentation not previously available for TASHA output.

The mappings that were designed to define the simulation output data in terms of the iCity

Ontology are described in detail in Appendix A.The Karma mapping files are available online in

the GitHub project repository at:

https://github.com/EnterpriseIntegrationLab/icity/tree/master/mappings/TASHA. The mappings

were formalized in the W3C standard R2RML [34] and designed and implemented using the

Karma [35] data transformation tool. The data was transformed into RDF (i.e., through OBDA

materialization) and then uploaded to a Virtuoso triple store.

8.1.3 Future Work

LD-R provides the ability to explore the results of a particular facet by enabling data pivots.22

While this is a potentially useful tool, initial performance was rather poor so we have not

included this capability at this time. It may be a tool to consider at a later date should the tool be

upgraded beyond the EC2 t2 micro instance. Similarly, the “restrictAnalysisToSelected” tag may

be useful in filtering results, however documentation notes that this option may result in slowed

performance so we have opted to exclude this for the time being. These features may be explored

in the future, taking performance requirements into account.

LD-R documentation also notes a timeline view as a desired future enhancement. In the

meantime, it might be useful to consider manipulating the data in order to view the associated

timestamps at a higher level of granularity (e.g. hourly).

22 http://ld-r.org/docs/configFacets.html

https://github.com/EnterpriseIntegrationLab/icity/tree/master/mappings/TASHA

96

Finally, as a follow-up to this work it would be interesting to consider the capture and integration

of results from other travel model simulations and tools. This would provide useful insights into

the potential value of semantic integration in the context of simulation results.

8.2 Analysis of TTC Data for Bus Bridging Study

This case study was derived from the motivating scenario described in Section 5.2. Similar to the

previous case, the main goal of this application is to support researchers in navigating and

exploring data of interest. In this case, the relevant datasets are those provided by the local transit

authority. No specialized architecture was designed; rather, standard Semantic Web tools of an

RDF triple store and a data mapper were implemented in order to formalize, integrate, and

provide a mechanism to access this data.

8.2.1 Data mapping

The transit research CQs were motivated by a work on bus bridging that was being conducted as

part of the iCity-ORF Project 2.3. The CQs required data from several sources: (1) the gtfs

specification of vehicle routes, (2) reports on subway incidents, and (3) data on the real-time

locations of transit vehicles. The mappings that were designed to define this data, in terms of the

iCity Ontology are described in detail in Appendix B. The Karma mapping files are available

online in the GitHub project repository at:

https://github.com/EnterpriseIntegrationLab/icity/upload/master/mappings/TTC. The mappings

were formalized in the W3C standard R2RML and designed and implemented using the Karma

data transformation tool. The data was transformed into RDF (i.e., through OBDA

materialization) and then uploaded to the Virtuoso23 triple store.

8.2.2 Queries

The result of the data mapping process was an RDF triple store, containing all of the data of

interest, formalized in the language of the iCity Ontology. This triple store provides a point of

access (SPARQL endpoint) for the queries – including, but not limited to, those identified by the

motivating scenario – to be put forward and answered.

A note on the use of GeoSPARQL functions: The CQs identified for this application involve

spatial relationships, defined by GeoSPARQL, between various spatial regions. Two approaches

are possible to obtain the desired result: (1) the spatial relationships might be pre-computed by

some external service given the specified geometries, and transformed into RDF and uploaded

along with the other data to the triple store; or (2) the spatial relationships might be determined

as part of the SPARQL query, by employing the GeoSPARQL functions supported by the triple

store. The latter approach was adopted in the design of the CQs used for this application,

however it is important to note that this approach will be highly dependent on the triple store

used. Currently, triple stores provide varying degrees of support for GeoSPARQL functions.

Those that do provide support employ their own specialized vocabulary to call the GeoSPARQL

functions in a SPARQL query. The application and CQs described in this report are specific to

the Virtuoso triple store, and would require revision for implementation with other triple stores.

23 https://virtuoso.openlinksw.com

https://github.com/EnterpriseIntegrationLab/icity/upload/master/mappings/TTC

97

8.2.3 Future Work

This use case demonstrated a very basic application of the ontology. There are many

opportunities for future work to improve its functionality to support the motivating scenario. In

particular, the architecture could be developed to streamline the data mapping process, for

example to automate the addition of data to the triple store when new/updated data becomes

available. Further, usability should be considered. As was explored in the previous application,

an interface to support both access to and presentation of the data should be considered in the

future. A simple next step might be the creation of query templates to avoid the need for

transportation researchers to interact directly with the SPARQL endpoint.

8.3 Ontology for ATIS in the ITSoS Architecture

The purpose of the ITSoS architecture is to support the creation of tools capable of
dynamic data discovery, information management, and interoperability between data
sources and services. The architecture focuses on three areas: the storage of the data
in a data lake, the semantic representation of the data, and the services layer. As
described in Section 5.4, the iCity Ontology plays a key role in the ITSoS architecture,
enabling an integrated representation of domain knowledge and supporting semantic
interoperability through different tools and across systems. In the iCity project, this
architecture was demonstrated through an example implementation of an Advanced
Traveler Information System (ATIS) application that incorporates data from loop
detectors.

8.3.1 Project 1.2: ITSoS Architecture

The ITSoS architecture proposed in iCity Project 1.2 is combined of the following major

components, as illustrated in Figure 21:

- Infrastructure: a multi-cloud strategy has been adopted to host the above layers

(data, Servicers and Applications). The right selection of the appropriate cloud

resources and hosting is based on the data and services requirements. The cloud

infrastructure provides dynamic recourse allocation and better cost management.

- Data Lake: provides a storage repository that host a vast amount of data (structured

and unstructured).

- Ontology Engine: provides access to a semantic representation for the data.

- Services Layer: provides a platform to develop the services. The services consume

the data which is provided by the Data Lake layer or through integration with the

Ontology Engine.

- Application Layer: uses one or more services to create a specific application, e.g.,

the Advanced Traveler information system (ATIS).

98

Figure 21: ITSoS Architecture

The iCity Ontology Engine supports the ITSoS by providing access to semantically-
annotated, integrated data. This requires that the data sources to be integrated be
interpretable in the language of the ontology(s), such that the ontology may be used to
explicitly describe the semantics of each entry in the data sources.
Using the appropriate ontologies, these mappings will be defined for each data source.
The inclusion of new data source types will require the definition of new mapping
definitions, but will not impact any of the existing data sources or mappings. The
mappings and the data serve as input to a tool which converts the data into information
represented using the terminology of the ontology. This data is formatted according to
Semantic Web Standards (i.e. it is serialized in RDF) such that it may then be loaded
into a knowledge graph, (i.e., a triple store). The R2RML (RDB to RDF Mapping
Language)24 is the language recommended for the specification of these mappings.
R2RML is a W3C Recommendation that has been developed specifically for this
purpose.
The resulting triple store houses all of the data. As a result of the mapping process, this
data is now semantically annotated and integrated. In other words, the relationships
between the various data stores are now explicit according to the concept definitions in
the ontology. This data may be accessed via SPARQL queries: these are queries that
are specified using the terminology defined by the ontology. In particular, the triple store

24 https://www.w3.org/TR/r2rml/

99

provides APIs that may be called by a variety of applications to access the data of
interest via these queries. This perspective of the architecture is illustrated in Figure 22.

Figure 22: Ontology Engine - interface between Project 1.1 and Project 1.2

An alternative architecture is possible in which the data is maintained solely in its original

databases and is retrieved on-demand via Ontology-Based Data Access (OBDA) tools. This

approach employs the same R2RML mappings, the main difference being that the data is not

stored centrally, but assumed to be distributed in pre-existing relational databases. The inclusion

of this approach is a consideration for future work.

8.3.2 ATIS Application

The objective of the ATIS application is to integrate real-time data with the Online Trip
Planner (OTP) tool. Researchers completed two case study implementations of the
ATIS application. The first utilized a database to capture processed loop detector data
sets, while the second designed the application according to the ITSoS architecture and
thus leveraged the ontology to process the data. The purpose of this work was to
showcase the differences between a “status quo” application and one developed
according to the ITSoS architecture. This work is presented in [36] and relevant code is
available on a Github repository here: https://github.com/OneITS/OTP. Here, we focus
on the use of the iCity ontology in the context of the ATIS application developed
according to the ITSoS Architecture.
The loop detector data is transformed using the Ontology Engine and is stored an
implementation of the AllegroGraph semantic graph database running on a remove
server. There exist a number of other data stores that might have been used and would
provide similar API functionality. AllegroGraph was chosen due to its popularity and its
unique implementation of a quintuple representation that includes an identifier for each
statement in the data store, as opposed to typical approaches which only provide
identifiers at the dataset level. This functionality is required for future extensions to this

https://github.com/OneITS/OTP

100

work that address issues such as provenance and confidence in the facts in the data
store.
In the context of the ATIS application, the mapped data, stored in AllegroGraph, shall serve as

input for the trip planning tool. Based on the road segments used in a trip from one location to

another, the ATIS will use the AllegroGraph API to query the ontology to retrieve TTI data for

the route. This data can then be used as input to the OTP in order to advise the user of potential

delays.

8.3.3 Data Mapping

The loop detector data was received in a simple, tabular format with the following
column headings: WayID, Mean_Value_Max, Time, and Date. This data set was an
excellent example of the challenges for semantic interoperability: communication with
the persons responsible for generating the data set was required in order to understand
the meaning of each of the attributes. This revealed the following, informal semantics for
each attribute:

• WayID: this value is the identifier of the road segment over which the loop
detector reading is aggregated.

• Mean_Value_Max: this value is the average Max TTI (Maximum Travel Time
Index), aggregated over the wayID readings, at one-hour intervals.

• Time: this value indicates the time of day of the start of the one-hour interval,
represented using an integer value that indicates hours past midnight. For
example, “0” indicates 12:00 AM, “1” indicates “1:00 AM”, and so on.

• Date: this value represents the date during which the readings were taken,
formatted as: year_month_day. For example, the value “017_07_01” indicates
the date July 1, 2017.

Much of the information that is embedded in these values is not clear from the attribute
labels alone. In order to enable interoperability, the semantics of these values must be
made explicit.
The application of the ontology engine architecture for the semantic augmentation of
sensor data was straightforward. Some minor cleaning of the datasets was required:
primarily this involved some reformatting of data values in order to comply with standard
datatypes (e.g. for date-time encodings). This cleaning was done using additional
functionality provided by the mapping tool, but could also have been accomplished with
some other preprocessing mechanism.
The mappings that were designed to define this data, in terms of the iCity Ontology are described

in detail in Appendix C. The Karma mapping files are available online in the GitHub project

repository at: https://github.com/EnterpriseIntegrationLab/icity/upload/master/mappings/ITSoS.

8.3.4 Future Work

To-date, the ontology engine has been used to facilitate the semantic formalization of loop

detector data for the ATIS application. Future work will be pursued in two different directions:

https://github.com/EnterpriseIntegrationLab/icity/upload/master/mappings/ITSoS

101

(1) Additional data sources may be added to extend the scope of the ATIS application to

cover other locations. This will be straightforward as the existing semantic mappings may

be reused for other datasets of the same type.

(2) The ATIS application may be extended, or a new application may be explored altogether,

to incorporate a broader range of dataset types. This might include data on the weather,

road closures, concerts and sporting events, safety indices, and so on.

These extensions will provide new opportunities to improve the traveler’s experience, and serve

to demonstrate the utility of the ITSoS framework and the value of the ontology engine as an

easily extensible tool to support semantic integration.

8.4 Integration with ArcGIS

Based on the motivating scenario described in Section 5.5, a prototype application was

developed to investigate the potential use of ontologies to support semantic integration of data in

ArcGIS. The application functions as a simple shortest path finder that is augmented with

contextual information about the resulting route. A subset of GFX data is mapped into RDF

using the vocabulary defined by the TPSO to create an integrated, semantically annotated

dataset. This supports a streamlined query process: the data is stored in a triple store that is

accessed by SPARQL queries to obtain information about a route from multiple data sources, a

process that would otherwise have required a number of complex queries in ArcGIS.

8.4.1 Initial Implementation

At the time of this report, an initial prototype has been implemented and the development of a

second version is ongoing. The design adopted for the initial prototype is illustrated in Figure 23.

The relevant datasets are extracted from the GFX into a PostgreSQL database in ArcGIS

Enterprise. This database is accessed by the ontop ontology mapping tool. Using a predefined set

of mappings, RDF data is generated from the database by ontop and stored in an SQLite database

– the knowledge graph. This data may then be accessed as required using Python, in particular

the Owlready225 and rdflib26 libraries.

When a user accesses the system, they specify an origin and destination. The system then

leverages ArcGIS functionality to calculate the shortest path from the origin to the destination,

according to the road segments defined in the network. The then system queries the knowledge

graph for contextual information about the road segments in the shortest route. These results are

collected and aggregated for presentation to the user.

25 https://owlready2.readthedocs.io/en/latest/

26 http://rdflib.readthedocs.io

102

Figure 23: Esri prototype design

Currently, the queries and the results display are hard-coded. However, with the query flexibility

supported by the ontology it will be a straightforward extension to enable a more interactive

interface in future iterations.

8.4.2 Data Mapping

The scope of the initial prototype was restricted to five key GFX datasets, and focused only on a

subset of the fields in each:

• Neighbourhood

• Land Use

• Land Cover

• Point of Interest

• Road Segment

In addition, new tables were generated by ArcGIS processes to capture the spatial relationships

between the features defined in the Neighbourhood, Land Use, Land Cover, and Point of Interest

datasets, and those in the Road Segment dataset. This was done in advance for efficiency as the

ArcGIS processes are highly performant and specialized for such tasks.

The resulting datasets were mapped into RDF using the Ontop OBDA tool. The mappings are

described in Appendix D; the Ontop files are available online at

https://github.com/EnterpriseIntegrationLab/icity/tree/master/mappings/Esri_GSX.

This application serves as a good example of a scenario where application-specific extensions to

the ontology are required. The GFX defines its own set of concepts for its datasets. Instead of

defining data mappings according to the generic iCity concepts, it is more precise to use the

definitions adopted by the GFX. Therefore, we extend the generic iCity terms such as Road

Store & access

RDF data

Back End Front End

Extract & update

from GFX

Materialize required data

Owlready, rdflib

Compute shortest route &

generate SPARQL queries

iCity TPSO

ArcPy

ArcPy

ArcGIS
Enterprise

https://github.com/EnterpriseIntegrationLab/icity/tree/master/mappings/Esri_GSX

103

Segment and Land Use with specializations according to the GFX standard. This enables a clear

specification of the relationship between GFX-specific terms, general concepts, as well as

overlapping concepts from other data sources. For example, a Road Segment defined in the

GFX will have some associated Road Class code that indicates the type of road, e.g. a Freeway

segment. This still inherits properties of a generic road segment, and a subset of the generic icity

road segments will in fact be freeway segments, however a road segment – in general – need not

have a GFX road class code. These GFX specific extensions are described along with the

mappings in Appendix D.

8.4.3 Future Work

Future work on this project will incorporate the ability to automatically update the knowledge

base to incorporate updates to the GFX. It will also explore the inclusion of additional fields as

well as datasets that are external to the GFX. Beyond this, there will also be a focus on

improving the user interface, both in terms of the visualization of information as well supporting

user interaction for decision-making. These extensions will be driven by investigations into more

detailed requirements for the NextGen-911 use case. Another application of this prototype that

should be explored in future work is the use of the ontology to verify data according to the GFX

standard. The ontology could be extended with the elicitation of more precise, intended

semantics from the owners of the GFX standard. Based on these extensions, incoming datasets

could then be assessed automatically against the definitions in the ontology. Such an application

could contribute to improved efficiencies and data quality.

There are other opportunities for future development of the GFX Ontology extension as well.

More meaningful taxonomies could be imposed on the existing land use, land cover, and road

classes that are currently defined. In addition, an implicit relationship exists between land use

and POI classes that should be explored.

9 Workflows

The activities required in the design and application of an ontology may vary greatly from case

to case, however there are also likely to be commonalities. Recognizing and designing

workflows around these common tasks improves efficiency and enables repeatability of past

work as well as consistency of future work. In this section we provide an overview of the

workflows that have been employed for the following key tasks that were involved in the design,

maintenance, and application of the iCity TPSO:

1. Data Mapping and Materialization

2. Data Storage and Access

3. Versioning

4. Documentation generation

9.1 Data Mapping

Data mapping refers to the process by which existing data sets are defined according the

vocabulary of the ontology. These definitions serve to disambiguate data sets and make their

104

semantics explicit. They are specified in such a way that the data sets may be automatically

transformed into, or accessed with Semantic Web technologies through an approach referred to

as Ontology Based Data Access (OBDA) [37]. While other approaches are possible, the de facto

standard for defining such mappings on the Semantic Web is the RDF to RDF Mapping

Language (R2RML)27.

9.1.1 Alternative approaches

Here, we focus on the triple store architecture, wherein the data sources are transformed

(materialized) into triples and uploaded to a triple store(s). This triple store may then be accessed

via SPARQL queries (including applications using the Apache Jena framework). It should be

noted that another possible architecture involves applying the semantic augmentation to access

the data in a database, this is referred to as virtual access.

This guide focuses on the use of the Karma Data Integration Tool28 for semantic augmentation

and data transformation, however it should be noted that several similar tools exist, with varying

capabilities and limitations. These tools are often referred to as R2RML processors or OBDA

tools; examples are Mastro29 and Ontop30, among others.

The KARMA31 [35] tool was used to transform the datasets for most of the applications.
This choice was motivated by several factors including: ease of use – the tool is
straightforward to use and includes a GUI to support the R2RML specification process;
range of acceptable data formats – the tool supports the transformation of not only data
in relational databases, but also data in .csv and .json formats, among others; batch
transformation – the tool easily enables the transformation of batches of files given the
R2RML mappings and thus should easily scale to larger use cases.

9.1.2 Basic data mapping workflow with Karma and Virtuoso

(1) Design mappings to capture the data using ontology. This step is performed offline and

shall be done only once for a particular data source (i.e. all data of like format may be

accessed/transformed with the same mapping). Karma provides a GUI to support this

process. Note that some cleaning may be required in order to transform the data into an

appropriate form.

27 https://www.w3.org/TR/r2rml/

28 http://usc-isi-i2.github.io/karma/

29 http://www.obdasystems.com/mastro

30 https://ontop-vkg.org

31 http://usc-isi-i2.github.io/karma/

105

i. Open Karma, load dataset and relevant ontology files (in current Karma

implementation, imports are not directly applied so uploading only the main

ontology file may not capture all of the necessary terms).

ii. Data cleaning: transform the data as required (reformatting, separation of cell

contents, etc).

This may require some use of Python. For example, in the TTS data we want to

transform 3d coordinates to 2d coordinates, and format them according to the

WKT format.

Simple reformat as WKT:

return "POLYGON(" + getValue("coordinates") + ")"

Reformat to remove 0-valued 3rd dimension from coordinates:

import re

line = getValue("coordinates")

line = re.sub(',',' ',line)

line = re.sub(' 0 ',',',line)

return line

The specification of IRIs is also a good step to take here. In some cases, this may require

reformatting of some of the data. It will also likely require the introduction of some base

namespace, e.g. “https://w3id.org/icity/TTC_srt_delays/...”

iii. Specify ontology mappings in Karma.

iv. Export R2RML model (ttl or rdf) file. This model is a representation of the

mapping of the data into the ontology.

v. At this point, for a one-off transformation the transformed data may also be

exported and saved for upload into the desired triple store. However, if the

mappings are to be generated and uploaded at a later date, only the R2RML

model is required.

9.1.3 Repeated Data Mappings

For multiple datasets with the same mapping, we can automate the above process once an initial

mapping has been defined. This is possible using the batch mode in Karma32.

Example: let’s download a bunch of TTC incident files and try to map them with a single

command, using the R2RML mapping that we defined for the first dataset.

32 https://github.com/usc-isi-i2/Web-Karma/wiki/Batch-Mode-for-RDF-Generation

106

Beginning with data files:

• SubwayDelay201706.csv

• SubwaySRTLogs201707.csv

• SubwaySRTLogs201708.csv

And a pre-defined mapping file

• SubwaySRT_Mapping

The mapping may be performed offline or online through the API. The API may eventually be

useful should the mappings be incorporated into part of some larger process (e.g. a reaction to

something such as a file being uploaded or stream data being received). Note that a different

process would need to be implemented for each file type in order to account for the different

mapping files. For now, we have employed the offline implementation.

9.1.4 Offline Batch Mapping

Batch mapping is useful for large quantities of files, or large file sizes. Note that for large

mappings, the JVM memory may need to be increased when the commands are run.

First-time setup: To build the offline jar, go to the karma-offline subdirectory and execute the

following:

cd karma-offline
mvn install -P shaded

java -cp karma-offline-0.0.1-SNAPSHOT-shaded.jar
edu.isi.karma.rdf.OfflineRdfGenerator --sourcetype CSV --filepath
"./files/SubwayDelay201706.csv" --modelfilepath "./files/SubwaySRT_Mapping.ttl" --
outputfile "./files/ttc-subway-delay-201706.n3" --sourcename "ttc"

9.1.4.1 A basic script to map a directory of files of the same type

Given:

• One or more files of the same type (i.e. with the same ontology mapping), in the directory

“./karma-offline/target/files”.

• A predefined mapping file (SubwaySRT_Mapping.ttl), stored in the same directory.

Execute from ./karma-offline/target directory:
for file in ./files/*.csv; do java -cp karma-offline-0.0.1-SNAPSHOT-

shaded.jar edu.isi.karma.rdf.OfflineRdfGenerator --sourcetype CSV --

filepath "$file" --modelfilepath "./files/SubwaySRT_Mapping.ttl" --

outputfile "${file/%csv}ttl" --sourcename "ttc"; done

For large files the default memory limit may need to be adjusted, e.g.:
java -Xmx6000m -cp karma-offline-0.0.1-SNAPSHOT-shaded.jar

edu.isi.karma.rdf.OfflineRdfGenerator --sourcetype CSV --filepath

107

"files/trip_stations.csv" --modelfilepath

"files/trip_stations_model.ttl" --outputfile

"files/trip_stations.ttl" --sourcename "tasha_microsim"

Result:

• A translated set of triples for each input file (<filename>.ttl)

Notes:

• The Karma installation (one-click install) doesn’t come with karma-offline, this requires

installation of the full version from Github.

• To run Karma (gui app) from the full installation:

>cd Web-Karma/karma-web

>mvn jetty:run

Karma should be accessible at: http://localhost:8080

• File paths are relative to the target directory that the command is executed from

9.2 Data Storage and Access

Once the ontology mappings have been created and the RDF triples have been materialized,

typically the data must be stored somewhere that is accessible with Semantic Web tools. As

mentioned in the previous section, one option is to use OBDA tools to provide virtual access to

the data. In this scenario, data is stored in its native form in some relational database(s) and

accessed through SPARQL queries that are transformed into SQL queries.

To-date, we have focused on the alternative approach: generating RDF triples from the data,

based on a mapping to the ontology, and uploading the data into a triple store. Many different

triple stores are available. All triple stores provide the same core functionality (that is, to store

and provide access to RDF triples), with different characteristics. Factors in choosing a triple

store may include cost, capabilities (in terms of speed and storage), as well as other tools that

may be packaged with the store.

A triple store will provide a SPARQL endpoint that can be used to evaluate SPARQL queries

against the uploaded data. Most also provide a SPARQL API that can be used to support

integration the store directly with some application(s).

All triple stores provide some mechanism(s) to upload data. This may vary slightly between

implementations.

9.2.1 Upload to triple store

Karma includes an option to configure upload to a triple store (“publishing data”), therefore it’s

possible that the mapping and upload process may be combined into a single step. However, it is

not clear from the documentation whether this is possible in batch mode. It may be more

appropriate to use the upload functionality provided by the chosen triple store.

Allegrograph supports data upload through the WebView tool, but also provides a tool for more

efficient, server-side, command-line uploads. This process is outlined below.

108

Uploading large datasets server-side on Allegrograph:

1. Transfer files to server where Allegrograph instance is running, e.g.

scp -r -i katsumi-key.pem <local location of files to upload> ec2-user@ec2-35-183-119-

164.ca-central-1.compute.amazonaws.com: <remote location of files to upload on aws>

2. Access server, e.g.

ssh -i katsumi-key.pem ec2-user@ec2-35-183-119-164.ca-central-

1.compute.amazonaws.com

3. Run agtool to load file(s) onto specified graph:

agtool load http://test:xyzzy@ec2-35-183-119-164.ca-central-

1.compute.amazonaws.com:10035/repositories/gtfs_test ./gtfs_to_upload/*.ttl

9.3 Ontology Documentation

In addition to the publication and maintenance of the detailed report provided here, it is a good

practice to provide detailed documentation at the individual ontology level. The iCity TPSO use

Widoco33 [38] to automatically generate HTML documentation pages based on the metadata

specified in each ontology’s OWL file. When an ontology’s IRI is accessed via a web browser,

rewrite rules (discussed at further length in the following section) will automatically return the

HTML documentation rather than the native OWL file. This helps to ensure availability of the

documentation and thus usability of the ontologies. A useful guide for the specification of

ontology-level metadata is provided by the authors of Widoco here:

http://dgarijo.github.io/Widoco/doc/bestPractices/index-en.html. Future work should focus on

the extension and elaboration of metadata that is currently encoded in the ontology in order to

enrich the resulting HTML documentation.

Two simple commands can be run in the directory where the ontologies are stored to

automatically update all of the documentation files based on the content of the github repository.

To update the documentation for the latest (default) version of the iCity TPSO:
for file in *.owl; do java -jar /Applications/widoco-1.4.6-jar-with-

dependencies.jar -ontFile $file -outFolder "${file/%.owl}" -

getOntologyMetadata -rewriteAll -lang en -includeImportedOntologies -

htaccess -webVowl -licensius; done

To update all of the version-specific documentation files:
for file in */*.owl; do java -jar /Applications/widoco-1.4.6-jar-with-

dependencies.jar -ontFile $file -outFolder "${file/%.owl}" -

33 https://zenodo.org/badge/latestdoi/11427075

mailto:ec2-user@ec2-35-183-119-164.ca-central-1.compute.amazonaws.com
mailto:ec2-user@ec2-35-183-119-164.ca-central-1.compute.amazonaws.com
http://dgarijo.github.io/Widoco/doc/bestPractices/index-en.html

109

getOntologyMetadata -rewriteAll -lang en -includeImportedOntologies -

htaccess -webVowl -licensius; done

9.4 Ontology Versioning

OWL2 includes a version IRI annotation at the ontology-level, however a detailed approach for

releasing of new versions of a particular ontology is not prescribed. In the continuing the

development of the iCity TPSO, it is important to approach the task of versioning in a standard

manner. In addition to considering the relevant suggestions and requirements as described in the

OWL2 specification, we have identified the following set of key requirements that must be met

by the versioning process:

1. Latest versions of the ontologies should be easily found and identifiable as such. In this

way users will be aware when improvements and/or corrections are available.

2. Permanent IRIs must be used to name the ontologies. These IRIs must dereference to the

ontologies’ locations thus ensuring that they are easily accessible.

3. Updated versions of the ontologies should not be unknowingly updated in ontologies that

import/reuse them.

4. The task of incorporating updates into ontologies that are using previous versions must be

addressed.

The last two points are related to an important challenge regarding potential issues arising from

the update of imported ontologies. When a new version of some iCity TPSO ontology –

Ontology X – is issued, it will be desirable to update any ontologies that import Ontology X

(including and in particular those other ontologies in the iCity TPSO that may Ontology X). One

consequence of this update is that the importing ontology (the ontology that imports Ontology X)

is changed in that it is now using a new version of Ontology X, so it too should be identified as a

new version. Clearly tracking and reflecting such changes is critical for ensuring the usability of

the ontologies.

9.4.1 Versioning Principles

The following principles must be adhered to in order to avoid issues with the versioning process

(detailed in the subsequent section).

1. All iCity TPSO ontologies must employ an ontology IRI and version IRI to make the

series of ontology versions explicit. Guidelines on semantic version numbering34 should

be adopted.

2. Any change (addition, removal, modification) to an ontology's axioms, including those of

any ontologies it (directly or indirectly) imports is considered a revision to the ontology.

34 http://semver.org/

110

When such revisions are officially released, they must be distinguished as such using the

Version IRI attribute.

3. According to best practices, the ontology IRI and version IRI locations should be defined

and de-referenceable with persistent URLs. The current version of an ontology should be

available at the ontology IRI to ensure that it is identified as the current version and that it

is easily discoverable to the public.

4. All imports must directly reference the imported ontology’s Version IRI (if available) to

make the reuse explicit; this is necessary as any update to an imported version should

result in an update to the importing ontology's version as well. Failure to do so potentially

violates one of the conventions for versioning described by the W3C. If the Ontology IRI

is used, then the imported ontology will always be the most recent version. While it is

undoubtedly desirable to ensure that the most correct, up-to-date version of a resource is

used, when a new version is created, by definition of import the ontology that is

importing this new version is now also changed. Thus, according to the W3C guidelines,

this ontology should also be recognized with a new Version IRI. Importing the Ontology

IRI makes this distinction difficult to recognize and impossible to maintain.

9.4.2 Process to Update Ontology-x.owl

The following process describes the steps necessary to release an updated version of some iCity

Ontology.

Process: Update Version

Input: New version of an ontology: ontology-x.owl

Output: New version of TPSO ontologies, with updated ontology-x.owl incorporated

Steps:

1. Define new Version IRI to distinguish the ontology (reflect that it is a new version).

Common practice for naming adopted by the iCity TPSO is <Version IRI> = <Ontology

IRI>+<Version number>. For example, if we have Ontology IRI =

"http://w3id.org/icity/Change/" then the Version IRI should be of the format "

http://w3id.org/icity/Change/1.0/"

2. Rename the owl:versionIRI attribute value to the new Version IRI. Do not rename

rdf:about, this tag defines the Ontology IRI.

http://w3id.org/icity/Change/1.0/

111

3. Upload the ontology and create a persistent url for the new Version IRI to redirect to the

new ontology's location, according to the predefined rewrite rules in the .htacess file.35

4. Update rewrite rules for the persistent url for the Ontology IRI to redirect to this new, most

recent version.

5. As required, update ontologies that import Ontology-x.owl. Specifically:

5.1. Create a new version of the importing ontology (perform Process to Update Ontology-

x).

5.2. Update the <import> tag to reflect the import of the new VersionIRI of Ontology-x.

5.3. Update (replace) all instances of the old Version IRI to the new Version IRI (ideally,

this will simply require an update to the prefix name definition).

5.4. Perform the Update Version process on the importing ontology.

In our experience, implementing these updates may be problematic with ontology editors. The

interface may obscure dependencies between ontologies thus making the required changes

unclear. At the time of this report, we recommend modifying the xml files directly. Currently,

the most straightforward way to implement these updates is by replacing all of the old version

IRIs at once. The imports structure of the ontology must be considered to determine which

ontologies have been impacted by the revision. In some cases, a revision may require changes to

the design of the importing ontologies; at a minimum, since the importing ontologies now import

a new version of Ontology-X, this must be reflected with the release of a new version as

discussed earlier in this section.

9.4.3 Versioning infrastructure

The following are required components of an infrastructure that supports the versioning process

described previously.

9.4.3.1 File Storage

Versions of the ontology may be developed and maintained via a version control system such as

Github, however this is not required. The granularity enabled by version control system may be

useful but is not necessary for the kind of versioning described here. For example, in git every

change that is made creates a new version of the ontology (file), but each of these changes should

not necessarily correspond to the issuing of a new version IRI for the ontology. Each version IRI

instead corresponds to a new release of the ontology.

The chosen file repository has two key roles:

1. To host the ontology and its version history and make it available and understandable to

the public.

35 The exact procedure will vary depending on the storage / purl set-up.

112

2. To support continued development of the ontology (i.e. between versions).

9.4.3.2 Permanent URL Redirect

Several organization schemes are possible with respect to the storage of versions of each owl file

(and corresponding html documentation), and the approach to redirect a persistent url to the

appropriate version of the file. Currently, we employ a .htaccess file with rewrite rules to redirect

web requests for the ontology IRIs to their actual location (or documentation, as appropriate).

The purpose of the .htaccess file is to facilitate the appropriate redirect from the permanent urls

to the files maintained in the Github repository. The rewrite rules for new versions of the

documentation (discussed in the previous section) are similarly accounted for in the .htaccess

file.

Since the OWL files may be versioned independently (a change to one file doesn’t necessarily

mean a new version of all of the files), the Ontology IRIs may redirect to different versions, so

the rewrite rules would need to be custom for each path. One option would be to maintain folders

for each version of the UrbanSystem ontology (resulting in some duplication of files). Instead,

we maintain each sub-ontology’s version history in its own file; Ontology Version IRIs are

directed here. Then, we also maintain a collection of “latest” ontology files in the main directory

(without any version suffix). The rewrite rule for this is straightforward and results in only a

single duplicate file for each sub-ontology. However, it does require an additional step for the

update process: that the “latest” file in the main directory be replaced.

The .htaccess file currently in use is available for review in the /docs folder of the iCity Github

repository36. The version of the file that is in use is currently stored in the /ontologies/icity

subdirectory of the EIL server; this is the file path that has been chosen for the ontologies’ IRIs.

Alternatives such as w3id.org exist for the definition of permanent urls, however issues with

security certificates were encountered that could not be resolved. To address this and avoid

future issues we have elected to define the IRIs according to a University-owned url.

10 Future Work

Future iterations of the iCity TPSO should develop a deeper semantics for the concepts identified

here, in addition to an expansion of scope. Directions for future work have been detailed at the

ontology level in Section Error! Reference source not found.. In addition, the overall scope of

the iCity TPSO should be expanded to address other areas of transportation planning including

freight and complete streets.

Future work will be dictated largely by use cases. Use cases will not only determine additional

requirements for representation, but applications with specified functionality to be supported by

the ontology. Promising use cases that should be investigated in the future include simulation

management, survey management, and in particular the capture of provenance information. The

Global Urban Data Repository (GUDR) proposed in [39]presents one possible application where

data could be stored and maintained with semantic information, formalized by the iCity TPSO,

and provenance information. This type of system would be valuable in ensuring both the

availability and accessibility of data.

36 https://raw.githubusercontent.com/EnterpriseIntegrationLab/icity/master/docs/.htaccess

113

Use cases involving reasoning may require semantics that are outside of the expressive abilities

of the OWL2 language; as has been mentioned several times in this report, it may be

advantageous to first-order logic version of the iCity TPSO’s axiomatization in order to capture

this semantics with greater accuracy.

The use of top-level ontologies is well-established in domains such as biology and biomedicine.

To facilitate reuse and comprehension across domain areas, a useful direction of future work

may be to pursue a mapping to one or more such top-level ontologies. This will help to make the

commitments of the iCity TPSO clear to persons already familiar with the top-level ontology.

One concern that may arise in the future is related to data ownership and privacy. The

implementations of the ontology have been pursued to-date have focused on using publicly

available data. However, future cases will likely arise with data that is of a sensitive nature. Data

restrictions (due to ownership or privacy) must be accounted for and respected when combining

this data. These restrictions are important as they protect everyone involved from being harmed

through the process of integration – whether it is harm due to unauthorized use of a person’s

data, or harm due to unintentional use of unauthorized data. Unauthorized data may not only be

an issue due to a violation of rights, it could be that the data had not been thoroughly cleaned or

checked and therefore was not released to the public, and this could result in its own set of

issues. It is important that any systems designed in the future are capable of supporting

safeguards such as data restrictions to prevent the use of unauthorized data.

One crucial area for future work that was not addressed or discussed here is ontology

visualization. There is a considerable need for effective ontology visualization tools. The task of

presenting an ontology to support navigation of its terms and facilitate comprehension of the

definition and access to annotated data remains an open challenge. The creation of these tools

must be a focus of future work in order to encourage adoption of the solutions discussed here.

Finally, based on experiences in the iCity project, a key direction that has been identified for

future work is support for the specification of data standards. Traditional standards efforts are

subject to ambiguity and cannot guarantee semantic integration; any standard may be ineffective

if it is not uniformly understood and adopted. These challenges may be addressed by making the

semantics of standards precise and unambiguous with the use of (computational) ontologies.

Therefore, the use of an ontology to formalize an ISO standard for city data has been proposed.

The scope of this standard will include transit and transportation-specific concepts such as roads,

routes, and schedules; it will also extend to descriptions of the urban system in general, and other

city services such as shelters. The proposed standard will be comprised of several levels,

illustrated in Figure 24; the Foundation Level covers very general concepts such as Time,

Location, and Activity. The City Level covers concepts that are general to cities and span all

services such as Households, Services, Residents. The Service Level spans concepts commonly

associated with a particular service but still shared with other services, such as Vehicles and

Transportation network.

This will expand the possibilities for data integration, consequently creating new opportunities

for novel research and operations contributions.

114

Figure 24: Levels of the City Data Model

The iCity TPSO will form the basis of the standard specification, however much work remains in

order to adequately capture the relevant concepts. At the time of this writing the proposed

standard is in the early stages of development. In taking steps to ensure its correctness and

completeness, a key effort has been the creation of a Global Collaboratory37: an online resource

to facilitate discussion around the concepts and definitions to be included in a standard for city

data. The platform encourages standards development via an open, global conversation, where

the global community of stakeholders can converge on a set of concepts and properties to be

included in the standard. Work on facilitating the conversation and distilling the results is

ongoing.

Acknowledgements

This project was supported by the Ontario Ministry of Research and Innovation through the

ORF-RE program.

References

[1] E. J. Miller, "iCity: Urban Informatics for Sustainable Metropolitan Growth; A Proposal

Funded by the Ontario Research Fund, Research Excellence, Round 7," University of

Toronto Transportation Research Institute, 2014.

37 http://citydata.utoronto.ca

115

[2] B. C. Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider, and U. Sattler, "OWL 2:

The next step for OWL," Journal of Web Semantics, vol. 6, no. 4, pp. 309-322, 2008.

[3] E. J. Miller and P. A. Salvini, "The integrated land use, transportation, environment

(ILUTE) microsimulation modelling system: Description and current status," Travel

behaviour research: The leading edge, pp. 711-724, 2001.

[4] N. F. Noy and D. L. McGuinness, "Ontology development 101: A guide to creating your

first ontology," ed: Stanford knowledge systems laboratory technical report KSL-01-05

and …, 2001.

[5] M. Uschold and M. Gruninger, "Ontologies: Principles, methods and applications," The

knowledge engineering review, vol. 11, no. 2, pp. 93-136, 1996.

[6] E. J. Miller, J. Vaughan, D. King, and M. Austin, "Implementation of a “next

generation” activity-based travel demand model: the Toronto case," in Presentation at the

Travel Demand Modelling and Traffic Simulation Session of the 2015 Conference of the

Transportation Association of Canada, 2015.

[7] M. Elshenawy, B. Abdulhai, and M. El-Darieby, "Towards a service-oriented cyber–

physical systems of systems for smart city mobility applications," Future Generation

Computer Systems, vol. 79, pp. 575-587, 2018.

[8] R. C. Jackson, J. P. Balhoff, E. Douglass, N. L. Harris, C. J. Mungall, and J. A. Overton,

"ROBOT: A Tool for Automating Ontology Workflows," BMC bioinformatics, vol. 20,

no. 1, p. 407, 2019.

[9] R. Battle and D. Kolas, "Linking geospatial data with GeoSPARQL," Semant Web J

Interoperability, Usability, Appl. Accessed, vol. 24, 2011.

[10] Time Ontology in OWL, O. W3C, 2017. [Online]. Available:

https://www.w3.org/TR/owl-time/

[11] J. R. Hobbs and F. Pan, "Time ontology in OWL," W3C working draft, vol. 27, p. 133,

2006.

[12] C. Welty, R. Fikes, and S. Makarios, "A reusable ontology for fluents in OWL," in

FOIS, 2006, vol. 150, pp. 226-236.

[13] H.-U. Krieger, "Where temporal description logics fail: Representing temporally-

changing relationships," in Annual Conference on Artificial Intelligence, 2008: Springer,

pp. 249-257.

[14] M. Katsumi and M. Fox, "A Logical Design Pattern for Representing Change Over Time

in OWL."

[15] L. Obrst et al., "The 2006 Upper Ontology Summit Joint Communiqué," Applied

Ontology, vol. 1, no. 2, pp. 203-211, 2006.

[16] A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, and L. Schneider, "Sweetening

ontologies with DOLCE," in International Conference on Knowledge Engineering and

Knowledge Management, 2002: Springer, pp. 166-181.

https://www.w3.org/TR/owl-time/

116

[17] R. Arp, B. Smith, and A. D. Spear, Building ontologies with basic formal ontology. Mit

Press, 2015.

[18] M. Katsumi and M. Fox, "Defining Activity Specifications in OWL," in WOP@ ISWC,

2017.

[19] R. Kowalski and M. Sergot, "A logic-based calculus of events. NewGeneration

Computing 4," ed, 1986.

[20] M. S. Fox, "Constraint-Directed Search: A Case Study of Job-Shop Scheduling,"

CARNEGIE-MELLON UNIV PITTSBURGH PA ROBOTICS INST, 1983.

[21] A. Sathi, M. S. Fox, and M. Greenberg, "Representation of activity knowledge for project

management," IEEE Transactions on pattern analysis and machine intelligence, no. 5,

pp. 531-552, 1985.

[22] M. S. Fox and M. Gruninger, "Enterprise modeling," AI magazine, vol. 19, no. 3, pp.

109-109, 1998.

[23] M. Grüninger, "Using the PSL ontology," in Handbook on Ontologies: Springer, 2009,

pp. 423-443.

[24] M. S. Fox, "A foundation ontology for global city indicators," University of Toronto,

Toronto, Global Cities Institute, 2013.

[25] F. G. Fadel, M. S. Fox, and M. Gruninger, "A generic enterprise resource ontology," in

Proceedings of 3rd IEEE Workshop on Enabling Technologies: Infrastructure for

Collaborative Enterprises, 1994: IEEE, pp. 117-128.

[26] T. Bittner and M. Donnelly, "Computational ontologies of parthood, componenthood,

and containment," in International Joint Conference on Artificial Intelligence, 2005, vol.

19: Citeseer, p. 382.

[27] A. Rector and C. Welty, "Simple Part–Whole Relations in OWL–W3C Editor’s Draft 11

Aug 2005," ed: W3C (http://www. w3. org/2001/sw/BestPractices/OEP/SimplePartW-

hole/), 2005.

[28] Y. Ru and M. Gruninger, "Parts Unknown: Mereologies for Solid Physical Objects," in

JOWO, 2017.

[29] H. Rijgersberg, M. Van Assem, and J. Top, "Ontology of units of measure and related

concepts," Semantic Web, vol. 4, no. 1, pp. 3-13, 2013.

[30] M. S. Fox, M. Barbuceanu, and M. Gruninger, "An organisation ontology for enterprise

modelling: preliminary concepts for linking structure and behaviour," in Proceedings 4th

IEEE Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises

(WET ICE'95), 1995: IEEE, pp. 71-81.

[31] B. Lorenz, H. J. Ohlbach, and L. Yang, "Ontology of transportation networks," 2005.

[32] S. Cox, A. Cuthbert, R. Lake, and R. Martell, "Geography markup language (GML) 2.0,"

URL: http://www. opengis. net/gml/01-029/GML2. html, 2001.

http://www/
http://www/

117

[33] N. Montenegro, J. C. Gomes, P. Urbano, and J. P. Duarte, "A land use planning ontology:

LBCS," Future Internet, vol. 4, no. 1, pp. 65-82, 2012.

[34] S. Das, S. Sundara, and R. Cyganiak, "R2RML: RDB to RDF Mapping Language. W3C

Recommendation (2012)," ed, 2016.

[35] C. A. Knoblock and P. Szekely, "Exploiting Semantics for Big Data Integration," AI

Magazine, vol. 36, no. 1, 2015.

[36] H. K. Bayanouni, Megan El-Darieby, Mohamed Abdulhai, Baher Fox, Mark S.,

"Semantically-enabled data integration for Transportation Systems," in To appear in:

55th Canadian Transportation Research Forum (CTRF) Annual Conference, Montreal,

Canada, 2020.

[37] G. Xiao et al., "Ontology-based data access: A survey," IJCAI Organization, 2018.

[38] D. Garijo, "WIDOCO: a wizard for documenting ontologies," in International Semantic

Web Conference, 2017: Springer, pp. 94-102.

[39] L. Xiao, "Transformation and Annotation of Crowd-Sourced open data into the Global

Urban Data Repository," 2018.

118

Appendix A. TASHA Data Mapping

• Currently looking at modeling “microsim” output from TASHA

• What about representation of the model and / or simulation itself? (e.g. parameters, other

model attributes)

The TASHA Microsim results are output into 5 csv files: persons.csv (basic demographic

attributes of the people taking the trips), trips.csv (description of the trips taken: by which

person, and from what origin to what destination), trip_modes.csv (description of the modes used

to make the trip), trip_stations.csv (identifies intermediate stations used to change modes – e.g.

the station at which the trip changes from auto to transit), and facilitate_passenger.csv (indicates

a relationship between two trips when one trip – by the driver – facilitates another – by the

passenger).

Mapping

Note that each instance represented by the output files should be distinguished from instances in

the real world, as instances of some simulation output.

• Rather than an ontology of the urban system, this data should be formalized by an

ontology of simulations of the urban system. This requires an extension of the urban

system ontology to capture the notion of simulation, and to formalize the relationship

between an instance of a simulation and various instances of domain specific classes such

as persons, trips, etc.

• Propose an extension of UrbanSystem.owl: UrbanSystemSimulation.owl

o Introduce classes: model, simulation run etc…

o Key relationship: SimulationRun hasSimulationOutput some

UrbanSystemOntologyThing

The result of an urban system simulation is essentially an instance of some part(s) of the urban

system and can be formalized by the urban system ontology. In addition, we need a way to

distinguish such instances from real-world data. To accomplish this, we extend the Urban

System Ontology with an ontology for simulations: the Urban System Simulation Ontology.

The following concepts are required for the Simulation extension:

• Simulation: A Simulation is an execution of some model system. It has some input and

output data, defined by some instances of the UrbanSystemOntologyClass.

A Simulation has a run date.

119

Simulation Metadata

Each set of simulation output files should be associated with a particular model run.

Future Work

• Determine whether output files of the simulation metadata exist (if not, request output of

some basic metadata, e.g. date run, etc?).

o <_:simulation_id> a sim:Simulation; hasRunDateTime…

Mississauga Zones

• name: zone id; Note: unclear whether this ID is specific to TASHA or intended to match

up to other traffic zone ids

-> for now, transform to ensure unique ID:

return "trafficzone_traisi_" + getValue("name")

-> <name_transform > a landuse:TrafficZone

• coordinates:

-> apply transformation (used for other esri data) to format coordinates as WKT:

import re

coord = getValue("coordinates").replace(",0", ",")

coord = re.sub(r'(\d+)(,)(\d+)', r'\1 \3', coord)

coord = "POLYGON(" + coord + ")"

coord = coord.replace(",)",")")

return coord

<name_transform> spatialloc:hasGeometry [a Geometry; asWKT

<coordinates_transform>].

persons.csv

• -> add <simulation_id> attribute; default value “dummy_sim_iri”

• Household_id:

-> <household_id> a household:HouseholdPD; sim:outputOfSimulation

<_:simulation_id>

Object Property Value

Simulation hasSimulationOutput some UrbanSystemOntologyThing

hasRunDate exactly 1 xsd:dateTime

120

• Person_id:

-> transform person_id to unique identifier:

<person_id_transform> : return "h" + getValue("household_id") + "p" +

getValue("person_id")

-> <person_id> a person:PersonPD; sim:outputOfSimulation <_:simulation_id>;

hasManifestation [a person:Person; inverse(household:hasMember) <household_id>].

• Age:

age property for Person: Person has Age exactly 1 uom:duration

-> <_person@t> hasAge [a uom:duration; hasValue [a uom:measure;

uom:hasNumericalValue <age>; uom:hasUnit uom:year]]

• Sex:

instances of Sex class (M/F for the purposes of urban studies)

transform value of Sex attribute to IRI:

-> <person_id> person:hasSex <sex_transform>

• License (Boolean)

Boolean property: isLicensedDriver for Person

-> <_person@t> isLicensedDriver <license>

• Transit_pass (Boolean)

Need to apply a transformation to achieve: if <transit_pass> = ‘true’ then there is some

transit pass object

-> transform <transit_pass> to <dummy_transit_pass_id>:

if (getValue("transit_pass")=="true"):

 return "transitpass_h" + getValue("household_id") + "p" +

getValue("person_id")

-> <_person@t> hasTransitPass <dummy_transit_pass_id>.

<dummy_transit_pass_id> a transit:TransitPass.

• Employment_status:

Subclasses of employee capture the employment status (FT, PT,…)

Transformation applied to convert employment_status to appropriate class name:

http://ontology.eil.utoronto.ca/icity/Organization/FullTimeRegEmployee

http://ontology.eil.utoronto.ca/icity/Organization/FullTimeHomeEmployee

121

http://ontology.eil.utoronto.ca/icity/Organization/PartTimeRegEmployee

http://ontology.eil.utoronto.ca/icity/Organization/PartTimeHomeEmployee

es = getValue("employment_status")

if (es =="F"):

 return

"http://ontology.eil.utoronto.ca/icity/Organization/FullTimeRegEmployee

"

if (es =="P"):

 return

"http://ontology.eil.utoronto.ca/icity/Organization/PartTimeRegEmployee

"

if (es =="H"):

 return

"http://ontology.eil.utoronto.ca/icity/Organization/FullTimeHomeEmploye

e"

if (es=="J"):

 return

"http://ontology.eil.utoronto.ca/icity/Organization/PartTimeHomeEmploye

e"

-> <_person@t> a <employement_status_transform>

• Occupation:

Subclasses of Occupation capture occupation types

-> transform occupation field to appropriate occupation subclasses:

O: not employed

G: general office / clerical

http://ontology.eil.utoronto.ca/icity/Organization/GeneralOffice

P: professional / management / technical

http://ontology.eil.utoronto.ca/icity/Organization/Professional

S: retail sales and service

http://ontology.eil.utoronto.ca/icity/Organization/Sales

M: manufacturing / construction / trades

http://ontology.eil.utoronto.ca/icity/Organization/Trades

o = getValue("occupation")

if (o == "G"):

 return

"http://ontology.eil.utoronto.ca/icity/Organization/GeneralOffice"

if (o == "P"):

 return

"http://ontology.eil.utoronto.ca/icity/Organization/Professional"

122

if (o == "S"):

 return "http://ontology.eil.utoronto.ca/icity/Organization/Sales"

if (o == "M"):

 return "http://ontology.eil.utoronto.ca/icity/Organization/Trades"

-> <_person@t> org:employedAs [a Occupation; a <occupation_transform>]

• Free_parking (Boolean)38: true if free parking is available at the person’s work location

FreeParking subclass of parking policy; other more specific scenarios could be subclasses

of the FreeParking class.

-> transform to represent free parking policy if applicable

if (getValue("free_parking") == "true"):

• return "http://ontology.eil.utoronto.ca/icity/Parking/FreeParkingPolicy"

-> <_person@t> org:EmployedBy [a org:Organization; parking:hasAllocatedParking [a

park:ParkingArea; park:hasParkingPolicy [a park:ParkingPolicy; a

<free_parking_transform>]]]

• Student_status: subclasses of Student to capture enrollment type (FullTimeStudent,

PartTimeStudent). As future work, these classes may to be defined based upon some

notion of course enrollment.

-> transform to capture appropriate classes (FT or PT)

s = getValue("student_status")

• if (s == "F"):

• return "http://ontology.eil.utoronto.ca/icity/Organization/FullTimeStudent"

• if (s == "P"):

• return http://ontology.eil.utoronto.ca/icity/Organization/PartTimeStudent

-> <person@t> a <student_transform>

• Work_zone: work location is contained in some zone; 0 if unemployed

assumption: zone IDs correspond to traffic zone identifiers; otherwise we can use the

generic Parcel class.

-> transform into “trafficzone_trasi_” iri

if (getValue("work_zone") != "0"):

38

http://ontology.eil.utoronto.ca/icity/Organization/PartTimeStudent

123

return "trafficzone_traisi_" + getValue("work_zone")

-> <work_zone_transform> a landuse:TrafficZone

-> <employer_blank_node> spatialloc:hasLocation [a Feature; inverse(contains)

<work_zone_transform>]

• School_zone: school location is contained in some zone; 0 if not a student

-> transform into “trafficzone_trasi_” iri

if (getValue("school_zone") != "0"):

return "trafficzone_traisi_" + getValue("school_zone")

-> <school_zone_transform> a landuse:TrafficZone

-> <school_blank_node> spatialloc:hasLocation [a Feature; inverse(contains)

<school_zone_transform>]

• Weight: omitted

• Additional mappings required: in order to capture the conditional existence of some

Organization that employs the Person, or School in which the person is enrolled; we need

to instantiate custom blank nodes. i.e. rather than define the blank node in the mapping,

we need to create a column “employer_blank_node” which is only defined with a blank

node value for entries where the person is employed. Similarly for “school_blank_node”.

-> <employer_blank_node>

if (getValue("employment_status") != "O") &

(getValue("employment_status") != ""):

 return "_:" + getValue("household_id") + "_" +

getValue("person_id") + "_employer"

-> <_person@t> org:employedBy <employer_blank_node>.

-> <school_blank_node>
if (getValue("student_status") != ""):

 return "_:" + getValue("household_id") + "_" +

getValue("person_id") + "_school"

-> <_person@t> org:enrolledIn <school_blank_node>

• Karma seems to have issues with certain types of mappings, therefore we need to

manually generate some additional classes of blank nodes (which are currently being

incorrectly generated by the software):

o Feature1 (school loc)

if (getValue("student_status") != ""):

124

 return "_:" + getValue("household_id") + "_" +

getValue("person_id") + "_school_loc"

o Feature1 (work loc)

o Duration (age)

Notes:

- Make sure to check that the fields are correctly transformed into IRIs; in some cases,

prefixes may need to be added (e.g. to distinguish between generic ids)

Discussion:

Note that the “free_parking” field is formalized as representing whether or not there is a parking

area that is associated with the person’s place of employment with a free parking policy.

However, the value of this field is ambiguous; the parking area may offer free parking for

employees only, it may offer free parking for the general publish, or free parking during specific

times of day (at which the employee is at work)/

trips.csv

• -> add <simulation_id> attribute; default value “dummy_sim_iri”

• Household_id:

-> <household_id> a household:HouseholdPD; sim:outputOfSimulation

<_:simulation_id>

• Person_id:

-> transform to create unique identifier, <person_id_transform>:

return "h" + getValue("household_id") + "p" + getValue("person_id")

-> <person_id_transform> a person:PersonPD; sim:outputOfSimulation

<_:simulation_id>; hasManifestation [a person:Person; inverse(household:hasMember)

<household_id>].

->transform to create blank node for manifestation:

return "_:h" + getValue("household_id") + "p" + getValue("person_id") +

"_person_" + getValue("trip_id")

• Trip_id:

-> transform to create unique identifier:

return "h" + getValue("household_id") + "p" + getValue("person_id") +

"t" + getValue("trip_id")

-> <trip_id_transform> a trip:Trip; activity:hasParticipant <_person@t>.

125

• O_zone: origin zone of the trip; i.e. the trip begins at a location that is contained in the

o_zone.

->transform o_zone value to ensure uniqueness and identify provenance

return " trafficzone_traisi_" + getValue("o_zone")

-> <o_zone_transform> a landuse:TrafficZone.

-> <trip_id> trip:startLoc [a spatialLoc:Feature; (inverse)(sfcontains)

<o_zone_transform>]

• O_act: activity at the origin zone; i.e. activity that the traveller was performing just prior

to the trip, one of: {PrimaryWork, SecondaryWork, ReturnFromWork,

WorkBasedBusines, School, JointOther, IndividualOther, Market, JointMarket, Home}

Created TASHA extension of UrbanSystemSimulation ontology to capture this. Added

TASHA Activity subclasses (note there is overlap with TTS activities; note that these

activities vary depending on the TTS year, and are slightly more specific).

Assumption: o_act occurs directly before the trip.

-> transform o_act into classes as defined in icity TASHA extension:

return "http://ontology.eil.utoronto.ca/icity/TASHA/" +

getValue("o_act")

-> <_oact> a activity:Activity; hasParticipant <person@t>; occursDirectlyBefore

<trip_id>.

-> <_oact> a <activity_transform>.

• D_zone: destination zone of the trip

->transform d_zone value to ensure uniqueness and identify provenance

return " trafficzone_traisi_" + getValue("d_zone")

-> <d_zone_transform> a landuse:Zone.

-> <trip_id> trip:endLoc [a spatialLoc:SpatialFeature; (inverse)(geo:contains)

<d_zone_transform>]

• D_act: as above with o_act

Assumption: d_act occurs directly after the trip.

-> transform d_act into classes as defined in the icity TASHA extension:

return "http://ontology.eil.utoronto.ca/icity/TASHA/" +

getValue("d_act")

126

• Weight

Notes:

A note on activity ordering, in particular as it applies to the concepts of origin- and destination-

activities used in TASHA: Although we are unable to fully define the semantics, some notion of

an ordering on activity occurrences must be captured in some cases. To address this, we

introduce the properties: “occursBefore” and “occursDirectlyBefore” in the Activity ontology.

An activity occursBefore another if its endOf instant is before the beginOf instant of the other

activity; the occursBefore relation is transitive. An activity occursDirectlyBefore another if it

occursAt an interval that meets the interval of the other activity. We cannot define this semantics

in OWL, though it would be supported by an extension with rules. In OWL, we are only able to

comment on the semantics, and define occursBefore as transitive and occursDirectlyBefore as a

subproperty of occursBefore.

trip_modes.csv

• Trip_id:

-> transform to create unique identifier:

return "h" + getValue("household_id") + "p" + getValue("person_id") +

"t" + getValue("trip_id")

-> <trip_id_transform> a trip:Trip; activity:hasParticipant39 <_person@t>.

• Mode: {Auto, Passenger, WAT, DAT, Walk, Bike, Carpool, Schoolbus, RideShare}

*assumption: the trip is made completely with the specified mode

WAT: “walk access transit”

DAT: “drive access transit”

-> transform into unique TASHA IRIs

return "http://ontology.eil.utoronto.ca/icity/TASHA/" +

getValue("mode")

<mode_transform> a Mode.

-> <trip_id_transform> trip:viaMode <mode_transform>.

• O_depart

transform “minutes from midnight” to xsd:time

39 Ontology was later updated to include a more specific property:

http://ontology.eil.utoronto.ca/icity/UrbanSystem/tripPerformedBy

127

Assumption: based on a review of the data, we assume “minutes from midnight” is

minutes after midnight as opposed to before.

• *add dummy date columns

-> import time

c = time.strptime("00:00:00","%H:%M:%S")

t = time.mktime(c)

otime = getValue("o_depart")

otime = float(otime)*60

t = t + otime

tstring = time.strftime("%H:%M:%S",time.localtime(t))

return getValue("dummy_date") + "T" + tstring + "-5:00"

• -> <trip> activity:beginOf [a time:Instant; time:inXSDDateTimeStamp

<o_depart_transform>].

Note: a trip (an activity) begins and ends at a particular instant in time. In order to define

this instant using the xsd:dateTime datatype, we need to provide a date. To achieve this,

for now, we introduce a <dummy_date> attribute with a default date: 2018-01-01. This is

consistent with the simulation data as it is intended to capture a single day of travel

activity. In future applications it will be desirable to make a more informed date

selection.

• D_arrive

convert “minutes from midnight” to xsd:time

-> as above for o_depart

• Weight: omitted

Notes:

Based on a review of the facilitate_passenger data (in particular, the ‘-1’ driver trip ID assigned

if the driver “facilitates” the passenger from home), we assume that the trip of the driver and the

passenger is identified as a single trip, rather than two individual trips. The overall trip of the

driver (including travel before / after the trip with the passenger) then is implicit, and there are no

overlapping trips captured in this dataset. Another way to view this is to consider the trip as

representing the movement of the vehicle rather than the person. It’s currently not clear whether

there are two mode entries for a trip with a passenger – is it captured simply as a “passenger”

mode, or both “passenger” and “auto”?

A question could be raised regarding the relationship between the modes identified in the

TASHA data. For example, carpool, rideshare, and passenger modes are likely all assumed to

take place via auto. Similarly, we might define a relationship between rideshare, carpool and

passenger modes. While it is possible to pursue such a representation, this raises the question:

are these modes classes or individuals? Currently, in our representation there is nothing we need

128

to say about the class of auto modes, the class of bike modes, and so on, therefore we opt to

maintain a representation where the distinct modes are represented as individual members of the

Mode class.

trip_stations.csv

Assuming we are uploading all of the csv files, there is no need to assert the households and

persons as simulation output each time – once is sufficient. The same is true for the relationship

between households, persons and trips.

• Household_id: omitted

• Person_id: omitted

• Trip_id:

-> transform to create unique identifier:

return "h" + getValue("household_id") + "p" + getValue("person_id")

+ "t" + getValue("trip_id")

-> <trip_id_transform> a trip:Trip.

omitted participant mapping too, this was also captured by previous data

• Station

 Note: this value represents the initial station “The selected stations are the places where

the traveler’s vehicle has been left as they switch to using public transit.”

-> transform the id to create an iri:

 return "NCS16_centroid_2011_" + getValue("station")

<station_transform> a spatialloc:Feature.

<sub_trip1> trip:endLoc <station_transform>.

<sub_trip2> trip:startLoc <station_transform>.

Note: “The station zone numbers are references to centroids in the NCS16 standard.” See

correspondence table

TBD: is there a resource for determining the coordinates of the centroids?

For now, we assume the centroids used are according to the 2011 system. In addition, we

use the supplementary Station Correspondence file to approximate the location of the

station (e.g. what zone it is located in).

• Direction: auto2transit or transit2auto

The mode of these trips (we expect) is “DAT” (drive access to transit), however the

direction field provides additional information about the subtrips that comprise the trip. If

129

the direction is auto2transit, then the first subtrip should be identified as having mode

“Auto”. Similarly, for transit2auto the second subtrip has the “Auto” mode. To

accomplish we transform the direction field into two separate mode attributes:

-> transform <mode1_derived>:

d = getValue("direction")

if "auto2" in d:

 return http://ontology.eil.utoronto.ca/icity/TASHA/Auto

-> <sub_trip1> trip:viaMode <mode1_derived>.

-> similar transformation for mode2_derived.

-> <sub_trip2> trip:viaMode <mode2_derived>.

Note that no mode is defined for the transit case as TASHA does not have an IRI for

exclusive transit modes.

• Weight: not mapped

facilitate_passenger.csv

• Household_id: omitted (relationship captured in other data sources)

• Passenger_id

-> transform to unique identifier

<passenger_id_transform> : return "h" + getValue("household_id") +

"p" + getValue("passenger_id")

• -> <passenger_id_transform> a person:PersonPD; change:hasManifestation [a

person:Person]

Note: mapping to household, etc omitted (redundant)

• Passenger_trip_id

-> transform to create unique trip_id

-> transform to create unique identifier:

return "h" + getValue("household_id") + "p" +

getValue("passenger_id") + "t" + getValue("passenger_trip_id")

• -> <passenger_trip_id_transform> a trip:Trip.

revised: create specializations of ‘hasParticipant’ for trip: hasPassenger and hasDriver

<passenger_trip_id_transform> trip:hasPassenger <_passenger_id@t>; trip:hasDriver

<_driver_id@t>

http://ontology.eil.utoronto.ca/icity/TASHA/Auto

130

• Driver_id

-> transform to unique identifier

<driver_id_transform> : return "h" + getValue("household_id") + "p"

+ getValue("driver_id")

• -> <driver_id_transform> a person:PersonPD; change:hasManifestation [a

person:Person]

• Driver_trip_id

-> transform to create unique identifier:

return "h" + getValue("household_id") + "p" + getValue("driver_id")

+ "t" + getValue("driver_trip_id")

• -> <driver_trip_id_transform> activity:occursDirectlyBefore

<passenger_trip_id_transform>

Note: could add mapping <driver_trip_id_transform> activity:hasParticipant

<_driver_id@t> however if our interpretation is correct then this should be redundant

with data already defined in trips.csv

• Weight

Notes:

The specification of trip id’s isn’t entirely clear. On a facilitates_passenger trip, is there a unique

trip_id that is generated only for the passenger? In other words, without referencing the

facilitates_passenger data, is there no way to identify the driver making the trip (and thus we

would only find the previous and subsequent trips)? Or, is a trip_id also generated for the driver

in trips.csv, so there are two distinct trip_ids generated for the same trip? We assume the former,

but it’s not clear in the description of the data.

Future Work

• Determine whether it’s possible to retrieve the intended simulation date from the

simulation metadata

• Station Correspondence: We should to capture the link between the NCS16 Centroid IDs

and the traffic zone they are contained in. This data could be used to identify the station

name associated the centroid.

o Centroid_2016 (or Centroid_2011?)

o GTA2001Zone

131

• In future work, the “weight” attribute should be incorporated into the mapping, as it

relates to a particular simulation.

132

Appendix B. Transit Data Mapping

Overview of datasets:

• Subway delay data

• TTC schedule data (gtfs)

• Vehicle location data (nextbus / other)

Subway & SRT Logs (December 2018)

To do: match the Station and Line values with the identifiers defined in gtfs.

• Date, Time: the date/time of the incident

Modify the date value to the xsd:date format

date = getValue("Date")

return datetime.datetime.strptime(date, '%m/%d/%y').strftime('%Y-%m-

%d')

Combine and transform these values into xsd:DateTimeStamp format

return getValue("xsddate") + "T" + getValue("Time") + "-05:00"

-> <_incident> a transit:TransitIncident; activity:beginOf [a time:Instant;

time:inXSDDateTimeStamp <date_time_stamp_transform>]

• Day: the day of week of the incident

Transform to schema.org day of week format:

• return "http://schema.org/" + getValue("Day")

-> <_incident> a transit:TransitIncident; activity:beginOf [a time:Instant;

time:inXSDDateTimeStamp <Day_transform>^^xsd:dateTimeStamp]

• Station: while station attribute values do match for the stop names specified in the gtfs

files, they are defined at a higher level, whereas gtfs specifies multiple stop points for a

given station. In the future, there may be a need to automate the formal relationship

between the stations and the gtfs stops they contain. It would also be useful to integrate

the subway station names with the actual associated location (shape info) of the stations,

if available.

-> <_incident> transit:associatedWithStop _:stopbnode [foaf:name <station>].

133

• Code

-> <_incident> transit:hasIncidentCode <code>

• Min Delay: the delay caused by the incident in minutes, or more accurately – the length

of the incident in minutes.

-> <_incident> activity:occursAt [a time:Interval; time:hasDurationDescription [a

time:GeneralDurationDescription; time:minutes <Min Delay>]]

• Min Gap: the gap following the incident in minutes. Note that this value represents the

resulting gap; i.e. from the time of the delay until after it is resolved and the next train

arrives at the station.

-> <_incident> causedGap [a time:Interval; time:hasDurationDescription [a

time:GeneralDurationDescription; time:minutes <Min Delay>]]

• Bound: optional route property

-> Future work: the value of this attribute might be applied to identify the involved stop

point (e.g. which station platform) more precisely.

• Line: (specialized) route

• Transform Line names into corresponding gtfs route ids:

line = getValue("Line")

if (line == "YU"):

 return "55305"

if (line == "BD"):

 return "55306"

if (line == "SRT"):

 return "55307"

if (line == "SHP"):

 return "55308"

• -> <_incident> associatedWithTrip [a TransitTrip; transit:occursOn [a Route;

manifestationOf <line_transform>]].

• <line_transform> a RoutePD.

• Vehicle: the vehicle involved in the incident

-> <_incident> associatedWithTrip [a TransitTrip; viaVehicle [a TransitVehicle;

hasTransitVehicleId <Vehicle>]

If required, approach to modify values to define new IRIs:

134

Create new columns for: stationIRI, incidentIRI, transitTripIRI, transitVehicleIRI,

intervalIRI, instantIRI

1. Modify station values for creation of stationIRI:

x = getValue("Station")

x=x.replace(" ","")

x=re.sub('[()]','-',x)

return x

2. Generate incident IRI based on station & dates (with ‘:’ omitted); generate trip and

vehicle IRIs as a function of the incident IRI, e.g.:

datetime = getValue("XSDDateTime")

datetime=datetime.replace(":","")

return "incident" + datetime

AVL Data (TTC NVAS XML Feed)

Provides near-live, historical, and predicted transit vehicle locations.

For the purposes of mapping design, we will use the 501 Streetcar data as example, loading the

following into Karma as a web service url:

http://webservices.nextbus.com/service/publicXMLFeed?command=vehicleLocations...

With the additional specification of the t parameter, we can query 15 minutes prior to some point

in time (e.g. to retrieve a snapshot of the vehicles’ locations shortly after some subway incident).

In order to obtain a complete picture, we will need to retrieve the data for all bus routes within

the time period of interest.

For example, a subway delay of 40 minutes occurred on May 1, 2018 at 10:05 AM. Therefore to

begin examining vehicle locations of interest, we can request data specifying the corresponding t

parameter (latest time of update) by, let’s say 10 minutes later (May 1, 2018 at 10:15AM) in

epoch time: t=1525184100.

http://webservices.nextbus.com/service/publicXMLFeed?command=vehicleLocations&a=ttc

&r=501&t=1525184100000

Note that the XML feed requires the specification of a route (the “r” parameter), therefore in

order to retrieve and map the required location data for a particular scenario (e.g. the question of

the locations of shuttle buses following a service), we will need identify all route ids of interest

(e.g. bus routes) and the time window(s) of interest (e.g. after a subway delay), and script a

retrieval of the required data (and its translation into an ontology-base formalism).

Detailed documentation on the feed is available at:

http://www.nextbus.com/xmlFeedDocs/NextBusXMLFeed.pdf.The mapping with respect to the

output from an arbitrary route is defined below. Note that this may change slightly with the

retrieval and storage of NextBus feed data into a database.

• lastTime GPSTime in XML feed collection

http://webservices.nextbus.com/service/publicXMLFeed?command=vehicleLocations&a=ttc&r=501&t=1525184100000
http://webservices.nextbus.com/service/publicXMLFeed?command=vehicleLocations&a=ttc&r=501&t=1525184100000
http://www.nextbus.com/xmlFeedDocs/NextBusXMLFeed.pdf

135

• vehicle id

-> <vehicle_id> a <transit:TransitVehiclePD>; change:hasManifesation [a

transit:TransitVehicle>

• vehicle dirTag: omitted

• vehicle heading: omitted

• vehicle lat, vehicle lon

transform to capture the location in a single field in WKT format

vehicle_lat_lon_transform:

return "POINT(" + getValue("lat") + " " + getValue("lon") + ")^^

<http://www.opengis.net/ont/geosparql#wktLiteral>"

-> <vehicle_id> change:hasManifestation [a transit:TransitVehicle; hasLocation [a

geosparql:Feature; geosparql:hasGeometry [a sf:Point; geosparql:asWKT

<vehicle_lat_lon_transform>]]]

-> artificial blank node required for Feature (Karma bug): <loc_blanknode>

return "_:feature" + getValue("id") + "_" + getValue("GPStime")

• predictable

(omitted)

• routeTag: specifies the route name that the vehicle is on: relationship with vehicle block;

as well as existence of trip viaVehicle. Note this is distinct from the route id assigned by

gtfs.

-> <_:vehicle@t> transit:onRoute <routeTag>.

<routeTag> a transit:Route.

also -> _:transittrip a transit:TransitTrip.

:transittrip trip:occursOn transit:Route; trip:viaVehicle <_:vehicle@t>

• secsSince Report: can be used in conjunction with lastTime to calculate a timestamp for

the location

transform: GPSTime – secsSince Report => epoch time of vehicle location

import time

diff = int(getValue("secsSinceReport"))

gpstime= int(getValue("GPStime"))

t = gpstime - diff

return str(datetime.datetime.utcfromtimestamp(t).isoformat()) + "Z"

136

#assumes the datetime conversion outputs UTC time

#for local time use .fromtimestamp and append "+05:00"

-> transform gpstime to create blank nodes for vehicle and trip intervals

<v_interval_blanknode>, <trip_interval_blanknode>:

return "_:interval_v_" + getValue("GPStime") +

getValue("secsSinceReport")

-> <_:vehicle@t> change:existsAt [a time:Interval; time:inside [a time:Instant;

time:inXSDDateTimeStamp <t_transform>]].

-> <_:transittrip> activity:occursAt [a time:Interval; time:inside [a time:Instant;

time:inXSDDateTimeStamp <t_transform>]].

TTC Routes & Schedules (gtfs)

Note: see https://www.nature.com/articles/sdata201889 for an example of processing and

filtering gtfs data

Revision to original mapping:

1. an incorrect generation of blank nodes in the mapping was identified. To remedy this, all

future revisions to this mapping should generate regular IRIs (not blank nodes) for known

but unidentified objects.

2. Required addition of location datatype40 to accommodate AllegroGraph’s geospatial

reasoning properties41.

Datatype generated from AGraph’s N-Dimensional Geospatial Datatype Designer:

http://franz.com/ns/allegrograph/5.0/geo/nd#_lat_la_-9.+1_+9.+1_+1.-4_+1.-1_lon_lo_-

1.8+2_+1.8+2_+1.-4

Required format: “<lat><lon>”^^<datatype>

agency.txt

Describes the organization responsible for a particular route.

• agency_id

-> <agency_id> a org:OrganizationPD

• <org_at_t_iri>

from datetime import date
return getValue("agency_id") + "_" + date.today().strftime("%m-

%d-%Y")

40 http://gruff.allegrograph.com:10035/doc/geospatial-nd-tutorial.html#geo-intro

41 http://gruff.allegrograph.com:10035/doc/magic-properties.html

https://www.nature.com/articles/sdata201889
http://franz.com/ns/allegrograph/5.0/geo/nd#_lat_la_-9.+1_+9.+1_+1.-4_+1.-1_lon_lo_-1.8+2_+1.8+2_+1.-4
http://franz.com/ns/allegrograph/5.0/geo/nd#_lat_la_-9.+1_+9.+1_+1.-4_+1.-1_lon_lo_-1.8+2_+1.8+2_+1.-4

137

• agency_name

-> <agency_id> change:hasManifestation [a org:Organization; foaf:name

<agency_name>]

• agency_url

-> <agency_id_manifestation> icontact:hasWebSite <agency_url>

• agency_timezone

-> the timezone where the agency is located.

to do: an Organization has some assocated location (a sf:Feature), and a Feature may be

associated with a time:TimeZone. Alternatively, we may also associate timezones with

addresses.

• agency_lang

(omitted)

• agency_phone

-> <agency_id_manifestation> icontact:hasPhoneNumber <agency_phone>

• agency_fare_url

(omitted)

calendar_dates.txt

Defines exceptions to service definitions in calendar.txt

• service_id

-> <service_id> a recur:HoursOfOperation

• <date>

a time:TemporalEntity

-> <xsd_date> xmodify to xsd format: YYYY-MM-DD
s = getValue("date")

return s[0:4] + "-" + s[4:6] + "-" + s[6:8]

-> <service_id> <exception_type> <date>.

<date> time:inXSDDate <xsd_date>]

• exception_type: service added or removed (1: added, 2: removed)

modify to capture implied property

138

-> 1: recur:recursAddition

-> 2: recur:recursExcept

s = getValue("exception_type")

if ((int)(s) == 1):

 return

"http://ontology.eil.utoronto.ca/icity/RecurringEvent/recursAddition"

if ((int)(s) == 2):

 return

"http://ontology.eil.utoronto.ca/icity/RecurringEvent/recursExcept"

calendar.txt

Defines dates for service availability; a weekly recurring event(s).

• service_id

-> <service_id> a recur:HoursOfOperation

• Monday:

-> modify if 1: <service_id> schema:dayOfWeek schema:Monday

if (int)(getValue("monday"))==1 :

 return "http://schema.org/Monday"

• Tuesday:

if 2: <service_id> schema:dayOfWeek schema:Tuesday

• Wednesday, Thursday, Friday, Saturday, Sunday:

-> as above

• <start_date> a time:Instant

-><start_date_xsd> modify to xsd format: YYYY-MM-DD

s = getValue("start_date")

return s[0:4] + "-" + s[4:6] + "-" + s[6:8]

• -> <service_id> recur:beginsRecurring <start_date>.

<start_date> time:Instant; time:inXSDDate <start_date>.

• <end_date> a time:Instant

-> <end_date_xsd> modify to xsd format: YYYY-MM-DD

s = getValue("end_date")

return s[0:4] + "-" + s[4:6] + "-" + s[6:8]

• -> <service_id> recur:endsRecurring <end_date>

<end_date> time:inXSDDate <end_date>.

139

routes.txt

• route_id

-> <route_id> a transit:RoutePD

• <route_manifestation_id>:

from datetime import date

return getValue("route_id") + "_" + date.today().strftime("%m-%d-

%Y")

• agency_id

• <transit_system_iri>:

return "transitsystem_" + getValue("agency_id")

-> <route_id> transit:inTransitSystem <transit_system_iri>.

• <transit_system_iri> a transit:TransitSystem; transit:operatedBy <agency_id>.

• route_short_name

-> <route_id> change:hasManifestation <route_manifestation_iri>.

<route_manifestation_iri> a transit:Route; transit:routeShortName <route_short_name>.

• route_long_name

-> <route_id> change:hasManifestation <route_manifestation_iri>.

• <route_manifestation_iri> a transit:Route; foaf:name <route_long_name>.

• route_desc (not filled)

• route_type

-> <route_id> transit:hasGTFSRouteType <route_type>

• route_url (not filled)

• route_color

-> <route_id> change:hasManifestation <route_manifestation_iri>.

• <route_manifestation_iri> a transit:Route; transit:hasDisplayColour <route_color>.

• route_text_color

-> <route_id> change:hasManifestation <route_manifestation_iri>.

• <route_manifestation_iri> a transit:Route; transit:hasRouteTextColour

<route_text_color>.

140

shapes.txt

Describes the shape and location of a particular trip.

• shape_id

-> <shape_id> a spatial:LineString

• shape_pt_lat,shape_pt_lon,shape_pt_sequence:

Shapes are not supported by Allegrograph, therefore this transformation need only

capture the individual points as lat/lon coordinates

• The geospatial encoding used by Allegrograph requires the longitude values to have 3

digits before the decimal place, meaning any 2-digit coordinates will need to be padded

with a 0. Note that the zfill function doesn’t work in this case because we are only

concerned with the number of digits preceding the decimal place.

<shape_pt_nD_transform> (specified nD datatype

http://franz.com/ns/allegrograph/5.0/geo/nd#_lat_la_-9.+1_+9.+1_+1.-4_+1.-1_lon_lo_-

1.8+2_+1.8+2_+1.-4 note that specification shouldn’t be necessary when AGraph on

autorecognize):

lon = float(getValue("shape_pt_lon"))

lat = float(getValue("shape_pt_lat"))

lon_str = str(abs(lon))

lat_str = str(abs(lat))

lon_str = lon_str.split(".")

lon_str = "%s.%s" % (lon_str[0].zfill(3), lon_str[1])

lat_str = lat_str.split(".")

lat_str = "%s.%s" % (lat_str[0].zfill(2), lat_str[1])

if lon>0:

 lon_str="+" + lon_str

elif lon<0:

 lon_str="-" + lon_str

if lat>0:

 lat_str="+" + lat_str

elif lat<0:

 lat_str="-" + lat_str

return lat_str + lon_str

http://franz.com/ns/allegrograph/5.0/geo/nd#_lat_la_-9.+1_+9.+1_+1.-4_+1.-1_lon_lo_-1.8+2_+1.8+2_+1.-4
http://franz.com/ns/allegrograph/5.0/geo/nd#_lat_la_-9.+1_+9.+1_+1.-4_+1.-1_lon_lo_-1.8+2_+1.8+2_+1.-4

141

Need to introduce a new data property to relate nD data points to individual geometries.

Analogous to the “asWKT” property

<point_iri> as_nDLatLon <shape_pt_nD_transform>.

• shape_dist_traveled: omitted

• point_iri: unique ID for point object

• line segment points

transform lat and lon columns to WKT point format:

return "POINT(" + getValue("shape_pt_lon") + " " +

getValue("shape_pt_lat") + ")”

set semantic type datatype: http://www.opengis.net/ont/geosparql#wktLiteral

<shape_id> a geo:Geometry; sf:contains <point_iri>.

<point_iri> a sf:Geometry; as_nDLatLon <shape_pt_nD_transform>.

Future work: In order to define the associated distance between points in the shape, we need to

reference the points across rows (i.e. using the <shape_pt_sequence> attribute).

• A few open questions must first be resolved:

o How can we create a mapping between rows in Karma, without modifying the

input file?

o Does the distance represent a (straight) line segment, or possibly a curved line

string with multiple intermediate points but only a known beginning and end?

o What is the most appropriate property to capture the distance travelled, and where

should it be defined?

stop_times.txt

Two key relationships captured in this dataset are not only between the attributes in the csv file

but between the rows, according to the ordering: the arrival and departure times, and the stop_ids

need to be referenced across rows in order to better capture the route links and times of the

scheduled trip segments. R2RML tools are not suited for this, therefore we opt to pre-process the

stop_times file to create new attributes that capture the attribute values of interest from the

following row. In this case, we are interested in stop_id and arrival_time, so the result of the

preprocessing is two new attributes: next_stop_id and next_arrival_time.

This preprocessing was performed using pandas (run stop_times_preprocess.py with python3).

• trip_id

• <subtrip_iri>:

142

return "subtrip_" + getValue("trip_id") + "_" +

getValue("arrival_time").replace(":","") + "_" + getValue("stop_id")

+ "_" + getValue("next_stop_id")

-> <trip_id> a trip:ScheduledTransitTrip; activity:hasSubRecurringEvent <subtrip_iri>.

• <subtrip_iri> a trip:ScheduledTransitTrip.

• arrival_time: not used

• departure_time, next_arrival_time: the scheduled departure time from the current stop

and arrival time at the next stop. *note need to ensure the format is correct (xsd:time)

-> <_scheduled_subtrip > rec:startTime <departure_time>; rec:endTime

<next_arrival_time>

• stop_id, next_stop_id: the origin of the trip segment

<route_iri>:

return "route" + getValue("trip_id") + "_" + getValue("stop_id") + "_"

+ getValue("next_stop_id")

-> <subtrip_iri > transit:scheduledOn <route_iri>.

• <route_iri> a transit:RouteSection; transit:beginsAtStop <stop_id>; transit:endsAtStop

<next_stop_id>

• stop_sequence: not used by the mapping but could be used for preprocessing to ensure

correct values for next stops and next arrival times

• stop_headsign: not in use

• pickup_type: indicates whether passengers are picked up at the stop, and if so how the

pickup must be arranged.

transform pickup_type into appropriate IRI

type = getValue("pickup_type")

if (type == "0"):

 return

"http://ontology.eil.utoronto.ca/icity/PublicTransit/AccessAsSchedul

ed"

if (type == "1"):

 return

"http://ontology.eil.utoronto.ca/icity/PublicTransit/AccessNotAvaila

ble"

if (type == "2"):

 return

"http://ontology.eil.utoronto.ca/icity/PublicTransit/AccessArrangedV

iaAgency"

if (type == "3"):

 return

143

"http://ontology.eil.utoronto.ca/icity/PublicTransit/AccessArrangedViaDriver"

-> <_scheduled_ subtrip> transit:hasPickupType <pickup_type_transform>

• drop_off_type: indicates whether passengers are dropped off at the stop, and if so how

the pickup must be arranged.

transform dropoff_type into appropriate IRI

as above with pickup type

• shape_dist_traveled: cumulative distance (from start of trip_id)

omit for now: TBD what the best way to represent this is

stops.txt

• stop_id

-> <stop_id> a transit:StopPoint

• stop_code

-> <stop_id> transit:hasStopCode <stop_code>

• stop_name

-> <stop_id> foaf:name <stop_name>

• stop_desc (not filled)

• stop_lat,stop_lon: transform into WKT format:

-> <stop_lon_lat_wkt>:

return "POINT(" + getValue("stop_lon") + " " + getValue("stop_lat")

+ ")^^<http://www.opengis.net/ont/geosparql#wktLiteral>"

• -> <stop_id> spatial:hasLocation [a spatial:Feature; spatial:hasGeometry [a

spatial:Geometry; asWKT <stop_lon_lat_wkt>]]

manually add blank node for Feature class (karma workaround)

return "_:stoplocfeature" + getValue("stop_id")

• transform into nD format for allegrograph:

<nD_transform>:

lon = float(getValue("stop_lon"))

lat = float(getValue("stop_lat"))

lon_str = str(abs(lon))

144

lat_str = str(abs(lat))

lon_str = lon_str.split(".")

lon_str = "%s.%s" % (lon_str[0].zfill(3), lon_str[1])

lat_str = lat_str.split(".")

lat_str = "%s.%s" % (lat_str[0].zfill(2), lat_str[1])

if lon>0:

 lon_str="+" + lon_str

elif lon<0:

 lon_str="-" + lon_str

if lat>0:

 lat_str="+" + lat_str

elif lat<0:

 lat_str="-" + lat_str

return lat_str + lon_str

• <nD_transform>^^<agraph datatype>

• zone_id (not filled)

• stop_url (not filled)

• location_type (not filled)

• parent_station (not filled)

wheelchair_boarding

need to transform numeric value into xsd:Boolean:

wb = getValue("wheelchair_boarding")

if (wb == '1'):

 return 'true'

if (wb == '2'):

 return 'false'

-> <stop_id> transit:wheelchairBoarding <wheelchair_boarding_transform>

trips.txt

• route_id

-> <route_id> a transit:RoutePD; change:hasManifestation <_route_manifest>

manual blank node for route@t:

return "_:route" + getValue("route_id") + "_" + getValue("trip_id")

• service_id: identifies the days when service is available for a particular route. A route

may have multiple service_ids defined, and each trip has a single service_id that

represents the days during which the trip is provided. The properties of the service_id

may be used to define the recurring days for the <trip_id>. In order to capture this, we’ll

145

need to merge the appropriate values for each service_id from the calendar.txt dataset.

OR: in lieu of merging the csv files, we define <service_id> as another RecurringEvent

and define <service_id> rec:hasSubRecurringEvent <trip_id>. In other words, during this

abstract event that recurs on some days of the week, the scheduled trip also occurs.

This is a correct representation but is it overly complex (e.g. to query for a schedule?)

-> <service_id> a contact:HoursOfOperation.

<_route_manifest> icontact:hasOperatingHours <service_id>.

-> <service_id> rec:hasSubRecurringEvent<trip>.

<trip> a transit:ScheduledTransitTrip;

The service may also be formalized as the Hours of Operation associated with the Route.

• trip_id

-> <trip_id> a transit: ; transit:scheduledOn <route_id>]

• trip_headsign

-> <trip_id> foaf:name <trip_headsign>

• trip_short_name (not filled)

• direction_id: inbound (1) vs outbound (0) (based on suggested values from

documentation

-> if 1: <trip_id> transit:isOutbound “true”

-> if 0: <trip_id> transit:isOutbound “false”

<trip_id> transit:isOutbound <direction_id_transform>

<direction_id_transform>:

d = getValue("direction_id")

if (d=="1"):

 return "true"

if (d=="0"):

 return "false"

• block_id

-> <block_id> a transit:VehicleBlock; transit:assignedFor <trip_id>; assignedTo [a

transit:TransitVehicle]

• shape_id: geometry representing the location of the scheduled trip; note that the shape

defines the path of the scheduled trip rather than the route because the route is more

general so it may include trips of slightly different shapes.

146

-> <trip_id> hasLocation [a spatialloc:Feature; spatialloc:hasGeometry <shape_id>]

add manual blank node for Feature:

return "_:feature" + getValue("trip_id") + "_" +

getValue("shape_id")

• wheelchair_accessible

a property of the vehicle performing the trip – but any number of vehicles could perform

the scheduled trip, therefore this is a property of the scheduled trip (that restricts vehicle

assignment) rather than of an individual vehicle that performs an occurrence of the trip.

-> <trip_id> transit:isWheelchairAccessible <wheelchair_accessible_transform>

0: not specified,

1: accommodation for at least one wheelchair

<trip_id> transit:isWheelchairAccessible “true”

2: no accommodation for wheelchair riders

<trip_id> transit:isWheelchairAccessible “false”

wheelchair_accessible_transform:

w = getValue("wheelchair_accessible")

if (w=="1"):

 return "true"

if (w=="2"):

 return "false"

• bikes_allowed (omitted): may be addressed similar to wheelchair_accessible

147

Appendix C. Loop Detector Data Mapping

The loop detector data was received in a simple, tabular format with the following
column headings: WayID, Mean_Value_Max, Time, and Date. In fact, this data set was
an excellent example of the challenges for semantic interoperability: communication
with the persons responsible for generating the data set was required in order to
understand the meaning of each of the attributes. This revealed the following, informal
semantics for each attribute:

• WayID: this value is the identifier of the road segment over which the loop

detector reading is aggregated.

• Mean_Value_Max: this value is the average Max TTI (Maximum Travel Time

Index), aggregated over the wayID readings, at one-hour intervals.

• Time: this value indicates the time of day of the start of the one-hour interval,

represented using an integer value that indicates hours past midnight. For

example, “0” indicates 12:00 AM, “1” indicates “1:00 AM”, and so on.

• Date: this value represents the date during which the readings were taken,

formatted as: year_month_day. For example, the value “017_07_01” indicates

the date July 1, 2017.

Much of the information that is embedded in these values is not clear from the attribute
labels alone. In order to enable interoperability, the semantics of these values must be
made explicit. As described in the previous section, this is done with mappings
expressed in R2RML. Which ontology(s) is used in the mappings depends on the scope
of the concepts represented in the data. Key concepts that we can recognize from the
data are the notion of road segments, time, and measures.
In what follows, we describe the mappings that were defined for each attribute, with
respect to the iCity TPSO, in order to support the data transformation. In particular, the
Observations42 and Transportation System43 Ontologies play a key role. As mentioned
in Section 8.3.3, some reformatting of the values into standard datatypes was also
required.

• The WayID value was defined as an individual member of the RoadSegment

class, as defined in the Transportation System Ontology from the TPSO.

42 http://ontology.eil.utoronto.ca/icity/Observations

43 http://ontology.eil.utoronto.ca/icity/TransportationSystem

148

• The RoadSegment class represents part of a particular Road that makes up the

physical infrastructure of the transportation system.

• The Mean_Value_Max value was defined as the value of the numerical_value

property of a Measure that is the value of a MeanTTI_Max Quantity. The

concepts of a numerical_value, a Measure, and a Quantity are defined in the

Units of Measure Ontology from the TPSO, whereas the MeanTTI_Max

specialization of a Quantity is defined in the Transportation System Ontology.

More specifically, the MeanTTI_Max is captured as an aggregate of a TTI_Max

Quantity, that is the aggregate of a TTI_Max value over a particular

RoadSegment (the WayID), that is aggregated over a particular Interval in time.

• The concept of an interval is introduced in the Time Ontology, and the Interval

itself is captured using the transformed Time and Date values. The resulting

value (an xsd:dateTimeStamp, as discussed above) provides a value for the start

time of the Interval that the TTI_Max is aggregated over, while a value one-hour

later provides the end time for the Interval.

This mapping is illustrated in Figure 25. The KARMA mapping files are available online in

the GitHub project repository at:

https://github.com/EnterpriseIntegrationLab/icity/tree/master/mappings/ITSoS

https://github.com/EnterpriseIntegrationLab/icity/tree/master/mappings/ITSoS

149

Figure 25: Mapping the data values into TPSO concepts. Data values are depicted in boldface blue and the ontology

concepts are illustrated with the lines and rectangles.

150

Appendix D. Esri GFX Data Mapping

GFX tables used:

• Neighbourhood

• Land Use

• Land Cover

• Point of Interest

• Road Segment

Additional tables computed based on spatial relationships:

• Intersect Neighbourhood

• Near Land Use

• Near Land Cover

• Near Point of Interest

Esri Extension of TPSO (“GSX Ontology”)

• New class: Neighbourhood subClassOf Parcel

o subClassOf hasLandUse value ‘NeighborhoodOrLocalPark’

o subClassOf foaf:name min 1 xsd:string

• New class: GFXLandUseClassification subClassOf LandUseClassification

o Subclasses may be defined according to the value of hasGFXLandUseCode:

GFXLandUseClassification hasGFXLandUseCode

General / Residential 1
Government 2

Medical 3

Education 4

Transportation 5
Commercial 6

Religious 7

Recreation 8
Cultural / Heritage 9

Hotel 10

Airport 11

Industrial 12
Community Centre 13

Agricultural 14

Energy 15

Banking and Finance 16

Mail and Shipping 17

151

Weather 18
Water Supply and
Treatment

19

Information and
Communication

20

Other 99

• New Class: GFXLandCover subClassOf LandUseClassification

o Subclasses of GFXLandCover may be defined according to the value of

hasGFXLandCoverCode:

• New Class: PointOfInterest

o PointOfInterest subclassof locatedOnParcel min 1 Parcel

o Subclasses of POI may be defined according to the value of

hasGFXPOIClassCode

1 General 16 Banking and Finance

2 Government 17 Mail and Shipping

3 Medical 18 Weather

4 Education 19 Water Supply and Treatment

0 No data 50 Shrubland 121 Annual Cropland

10 Unclassified 51 Shrub tall 122
Perennial Cropland and

Pasture

11 Cloud 52 Shrub low 200 Forest/Tree classes

12 Shadow 53 Prostrate dwarf shrub 210 Coniferous Forest

20 Water 80 Wetland 211 Coniferous Dense

21 Beach 81 Wetland - Treed 212 Coniferous Open

30 Barren/Non-vegetated 82 Wetland - Shrub 213 Coniferous Sparse

31 Snow/Ice 83 Wetland - Herb 220 Deciduous Forest

32 Rock/Rubble 100 Herb 221 Broadleaf Dense

33 Exposed land 101
Tussock graminoid

tundra
222 Broadleaf Open

34 Developed 102 Wet sedge 223 Broadleaf Sparse

35
Sparsely vegetated

bedrock
103

Moist to dry nontussock

graminoid/dwarf shrub

tundra

230 Mixed Forest

36
Sparsely vegetated till-

conluvium
104

Dry graminoid prostrate

dwarf shrub tundra
231 Mixedwood Dense

37

Bare soil with

cryptogam crust - frost

boils

110 Grassland 232 Mixedwood Open

40 Bryoids 120
Cultivated Agricultural

Land
233 Mixedwood Sparse

152

5 Transportation 20 Information and Communication

6 Commercial 21 Settlement

7 Religious 22 Natural

8 Recreation 99 Other

9 Cultural / Heritage

10 Hotel

11 Airport

12 Industrial

13 Community Centre

14 Agricultural

15 Energy

• New Class: GFXRoadSegment subclassOf TransportationComplex (not quite

icity:RoadSegment because it also includes other modes of transport)

o Subclassof hasRoadLevel exactly 1 RoadLevel

o subclasses of RoadSegment may be defined according to the value of

hasGFXRoadClassCode:

• New object property: hasRoadLevel some RoadLevel

• Subclasses of RoadLevel definable wrt hasGFXRoadLevelCode values

Grade Level – Above or below
0 Ground Level

1 Freeway 11 Rapid Transit

2 Expressway / Highway 12 Service Lane

3 Arterial 13 Winter

4 Collector 14 Major Arterial

5 Local / Street 15 Minor Arterial

6 Local / Strata 16 Recreation

7 Local / Unknown 17 Resource

8 Alleyway / Lane 18 Lane

9 Ramp 19 Alleyway

10 Resource / Recreation 20 Local

21 4WD 22 Ferry

23 Farm 24 Freeway Ramp

25 Highway Ramp 26 Major Arterial Ramp

27 Minor Arterial Ram 28 Collector Ramp

29 Local Ramp 99 Other

153

1 First Level

2 Second Level

3 Third Level

4 Fourth Level

-1 Subsurface

-2 Second Subsurface

• New object property: routeNear

o Future work: definable with resepct to geo:within between locations of objects?

• New object property: routeIntersects

o Future work: definable with respect to geo:intersects between locations of objects

Appendix E. Mappings from tables to iCity TPSO Esri Extension

Neighbourhood (neighbourhood_mun)

SELECT feature_hash, name1 from neighbourhood_mun

Ontop mapping:

{feature hash} a :Neighbourhood;

foaf:name {name1}.

Land Use (landuse_mun)

SELECT feature_hash, lu_class, name1, desc_english from landuse_mun

Ontop mapping:

{feature hash} a landuse:Parcel;

landuse:hasLandUse [a :GFXLandUseClassification;

:hasGFXLandUseCode {lu_class}

foaf:name {name1}.

Land Cover (landcover_mun)

SELECT feature_hash, code from landcover_mun

Ontop mapping:

{feature_hash} a landuse:Parcel;

 Landuse:hasLandUseClassification [a :GFXLandCoverClassification;

:hasGFXLandCoverClassCode {code}]

154

Point of Interest (pointofinterest_mun)

SELECT feature_hash, class, name_1 from pointofinterest_mun

Ontop mapping:

{feature_hash} a landuse:Parcel;

:locatedOnParcel [a :GFXPointOfInterest; :hasGFXPOIClassCode

{class}; foaf:name {Name 1}].

Road Segment (roadsegment_mun)

SELECT feature_hash, road_level, class, name_1, length from roadsegment_mun

Ontop mapping:

{feature_hash} a :GFXRoadSegment;

:GFSroadLevelCode {road_level};

foaf:name {name_1};

:hasGFXRoadClassCode {class};

Om:hasLength [a om:length; om:measure [a Measure; om:numerical_value

{length}]].

Intersect Neighbourhood (generated via ArcGIS process)

SELECT feature_hash_rd,feature_hash_neigh from Road_Intersect_Neighbourhood

Ontop mapping:

{feature_hash_rd} GFX:routeIntersects {feature_hash_neigh}.

Near Land Use (generated via ArcGIS process)

SELECT feature_hash_LU, feature_hash_rd from Road_Near_LandUse

Ontop mapping:

{feature_hash_rd} :routeNear {feature_hash_lu}.

Near Land Cover (generated via ArcGIS process)

SELECT feature_hash_LC,feature_hash_rd from Road_Near_LandCover

Ontop mapping:

{feature_hash_rd} :routeNear {feature_hash_LC} .

Near POI (generated via ArcGIS process)

select feature_hash_poi,feature_hash_rd from Road_Near_POI

Ontop mapping:

{feature_hash_rd} :routeNear {feature_hash_poi}.

	1 Purpose
	2 Scope
	3 Role of the Ontology
	4 Development Approach
	5 Requirements
	5.1 Motivating Scenario: Land Use and Transportation Simulation
	5.2 Motivating Scenario: Transit Research
	5.3 Motivating Scenario: Smart Parking Applications
	5.4 Motivating Scenario: ATIS via ITSoS
	5.5 Motivating Scenario: ArcGIS Query Support
	5.6 Beyond motivating scenarios

	6 The iCity Transportation Planning Suite of Ontologies
	6.1 Namespaces
	6.2 Pragmatic Design Practices
	6.3 Foundational Ontologies
	6.3.1 Location Ontology
	6.3.1.1 The Ontology
	6.3.1.2 An Example
	6.3.1.3 Future Work

	6.3.2 Time Ontology
	6.3.2.1 The Ontology
	6.3.2.2 An Example

	6.3.3 Change Ontology
	6.3.3.1 The Ontology
	6.3.3.2 An Example
	6.3.3.3 Future Work

	6.3.4 Activity Ontology
	6.3.4.1 The Ontology
	6.3.4.2 An Example
	6.3.4.3 Future Work

	6.3.5 Recurring Event ontology
	6.3.5.1 The Ontology
	6.3.5.2 An Example
	6.3.5.3 Future Work

	6.3.6 Resource Ontology
	6.3.6.1 The Ontology
	6.3.6.2 An Example
	6.3.6.3 Future Work

	6.3.7 Parthood Ontology
	6.3.7.1 The Ontology
	6.3.7.2 An Example
	6.3.7.3 Future Work

	6.3.8 Units of Measure Ontology
	6.3.8.1 The Ontology
	6.3.8.2 An Example
	6.3.8.3 A note on populations and cardinality
	6.3.8.4 Future Work

	6.3.9 Observations Ontology
	6.3.9.1 The Ontology
	6.3.9.2 An Example
	6.3.9.3 Future Work

	6.4 Contact Ontology
	6.4.1 Future Work

	6.5 Person Ontology
	6.5.1 Future Work

	6.6 Household Ontology
	6.6.1 Future Work

	6.7 Organization Ontology
	6.7.1 Future Work

	6.8 Building Ontology
	6.8.1 Future Work

	6.9 Vehicle Ontology
	6.10 Transportation System Ontology
	6.10.1 Future Work

	6.11 Travel Costs
	6.11.1 Future Work

	6.12 Parking Ontology
	6.12.1 Future Work

	6.13 Public Transit Ontology
	6.13.1 Future Work

	6.14 Land Use Ontology
	6.14.1 Future Work

	6.15 Trip Ontology
	6.15.1 Future Work

	6.16 Trip Costs
	6.16.1 Future Work

	6.17 Urban System Ontology
	6.17.1 Future Work

	7 Evaluation
	7.1 Consistency
	7.2 Competency
	7.2.1 CQs for Land Use and Transportation Simulation
	7.2.2 CQs for Transit Research
	7.2.3 CQs for Smart Parking Applications
	7.2.4 CQs for ATIS via ITSoS
	7.2.5 CQs for ArcGIS Query Support

	8 Application
	8.1 Exploration of Travel Model Data
	8.1.1 Summary of Facets
	8.1.2 Data Mappings
	8.1.3 Future Work

	8.2 Analysis of TTC Data for Bus Bridging Study
	8.2.1 Data mapping
	8.2.2 Queries
	8.2.3 Future Work

	8.3 Ontology for ATIS in the ITSoS Architecture
	8.3.1 Project 1.2: ITSoS Architecture
	8.3.2 ATIS Application
	8.3.3 Data Mapping
	8.3.4 Future Work

	8.4 Integration with ArcGIS
	8.4.1 Initial Implementation
	8.4.2 Data Mapping
	8.4.3 Future Work

	9 Workflows
	9.1 Data Mapping
	9.1.1 Alternative approaches
	9.1.2 Basic data mapping workflow with Karma and Virtuoso
	9.1.3 Repeated Data Mappings
	9.1.4 Offline Batch Mapping
	9.1.4.1 A basic script to map a directory of files of the same type
	Notes:

	9.2 Data Storage and Access
	9.2.1 Upload to triple store

	9.3 Ontology Documentation
	9.4 Ontology Versioning
	9.4.1 Versioning Principles
	9.4.2 Process to Update Ontology-x.owl
	9.4.3 Versioning infrastructure
	9.4.3.1 File Storage
	9.4.3.2 Permanent URL Redirect

	10 Future Work
	Acknowledgements
	References
	Appendix A. TASHA Data Mapping
	Mapping
	Simulation Metadata
	Mississauga Zones
	persons.csv
	trips.csv
	trip_modes.csv
	trip_stations.csv
	facilitate_passenger.csv

	Future Work

	Appendix B. Transit Data Mapping
	Subway & SRT Logs (December 2018)
	AVL Data (TTC NVAS XML Feed)
	TTC Routes & Schedules (gtfs)
	agency.txt
	calendar_dates.txt
	calendar.txt
	routes.txt
	shapes.txt
	stop_times.txt
	stops.txt
	trips.txt

	Appendix C. Loop Detector Data Mapping
	Appendix D. Esri GFX Data Mapping
	GFX tables used:
	Esri Extension of TPSO (“GSX Ontology”)
	Appendix E. Mappings from tables to iCity TPSO Esri Extension
	Neighbourhood (neighbourhood_mun)
	Land Use (landuse_mun)
	Land Cover (landcover_mun)
	Point of Interest (pointofinterest_mun)
	Road Segment (roadsegment_mun)
	Intersect Neighbourhood (generated via ArcGIS process)
	Near Land Use (generated via ArcGIS process)
	Near Land Cover (generated via ArcGIS process)
	Near POI (generated via ArcGIS process)

